[1] 李宏男,高东伟,伊廷华.土木工程结构健康监测系统的研究状况与进展[J].力学进展,2008,38(2):151-166. LI H N, GAO D W, YI T H. Advances in structural health monitoring systems in civil engineering[J]. Advances in Mechanics, 2008, 38(2): 151-166 (in Chinese). [2] 张 东,吴科如,李宗津.水泥基压电机敏复合材料的可行性分析和研究[J].建筑材料学报,2002,5(2):141-146. ZHANG D, WU K R, LI Z J. Feasibility study of cement based piezoelectric smart composites[J]. Journal of Building Materials, 2002, 5(2): 141-146 (in Chinese). [3] YUAN M Z, ZHANG J R, YANG L Z, et al. Processing method and property study for cement-based piezoelectric composites and sensors[J]. Materials Research Innovations, 2015, 19(s1): 134-138. [4] LAM K H, CHAN H L W. Piezoelectric cement-based 1-3 composites[J]. Applied Physics A, 2005, 81(7): 1451-1454. [5] 朱剑波.水泥基压电传感器动态称重系统研究[D].广州:华南理工大学,2014. ZHU J B. Research on weigh in motion system based on cement-based piezoelectric sensor[D]. Guangzhou: South China University of Technology, 2014 (in Chinese). [6] 雷 霆,陈 刚,何颖波,等.冲击载荷作用下PZT-5压电陶瓷的力电特性[J].高压物理学报,2019,33(5):131-137. LEI T, CHEN G, HE Y B, et al. Dynamic behavior of PZT-5 piezoelectric ceramics under impact loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 131-137 (in Chinese). [7] 谈 瑞,李海洋,黄俊宇.Al2O3陶瓷动静态压缩下碎片形貌与破坏机理分析[J].爆炸与冲击,2020,40(2):50-59. TAN R, LI H Y, HUANG J Y. Investigations on the fragment morphology and fracture mechanisms of Al2O3 ceramics under dynamic and quasi-static compression[J]. Explosion and Shock Waves, 2020, 40(2): 50-59 (in Chinese). [8] 唐恩凌,李 月,王睿智,等.强冲击下PZT-5H压电陶瓷的动力响应及电输出特性研究[J].兵工学报,2018,39(5):983-990. TANG E L, LI Y, WANG R Z, et al. Research on dynamic response and electrical output characteristics of PZT-5H piezoelectric ceramics under strong shock[J]. Acta Armamentarii, 2018, 39(5): 983-990 (in Chinese). [9] HAN R, SHI Z F. Dynamic analysis of sandwich cement-based piezoelectric composites[J]. Composites Science and Technology, 2012, 72(8): 894-901. [10] ZHANG T T, ZHANG K P, LIU W D, et al. Impact mechanical response of a 2-2 cement-based piezoelectric sensor considering the electrode layer effect[J]. Sensors (Basel, Switzerland), 2017, 17(9): E2035. [11] ZHANG F, FENG P J, WANG T, et al. Mechanical-electric response characteristics of 1-3 cement based piezoelectric composite under impact loading[J]. Construction and Building Materials, 2019, 228: 116781. [12] 徐先洋,钱 霖,张 峰,等.1-3型水泥基压电复合材料在冲击载荷下的电学响应[J].压电与声光,2017,39(3):433-436+441. XU X Y, QIAN L, ZHANG F, et al. Electrical response of 1-3 cement based piezoelectric composites under impact loading[J]. Piezoelectrics & Acoustooptics, 2017, 39(3): 433-436+441 (in Chinese). [13] 姚 科.水泥基压电复合材料传感器在钢筋混凝土结构中应用研究[D].哈尔滨:哈尔滨工业大学,2010. YAO K. Cement based piezoelectric composite sensor in the application of reinforced concrete structures[D]. Harbin: Harbin Institute of Technology, 2010 (in Chinese). [14] ZHANG T T, LIAO Y C, LIU W D. Theoretical solutions of 2-2 multi-layered cement-based piezoelectric composite under impact load[J]. Composite Structures, 2018, 195: 249-264. [15] 宫凤强,王 进,李夕兵.岩石压缩特性的率效应与动态增强因子统一模型[J].岩石力学与工程学报,2018,37(7):1586-1595. GONG F Q, WANG J, LI X B. The rate effect of compression characteristics and a unified model of dynamic increasing factor for rock materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1586-1595 (in Chinese). [16] GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization[J]. International Journal of Impact Engineering, 2001, 25(9): 869-886. |