[1] 龚 珍,卜小波,吴 浩.基于PSO-SVM的混凝土抗压强度预测模型[J].混凝土,2013(12):11-13. GONG Z,PU X B,WU H.Concrete compressive strength test based on vector machine optimized by particle swarm optimization algorithm[J].Concrete,2013(12):11-13 (in Chinese). [2] 朱学兵.混凝土强度预测的两种非线性模型比较研究[J].混凝土,2011(12):28-30. ZHU X B.Strength prediction of high strength concrete using two nonlinear methods[J].Concrete,2011(12):28-30 (in Chinese). [3] ASTERIS P G,KOLOVOS K G,DOUVIKA M G,et al.Prediction of self-compacting concrete strength using artificial neural networks[J].European Journal of Environmental and Civil Engineering,2016,20(1):s102-s122. [4] TSAI H C.Modeling concrete strength with high-order neural networks[J].Neural Computing and Applications,2016,27(8):2465-2473. [5] 高宝成,陶博文.基于SVR算法的混凝土强度预测[J].城市住宅,2019(4):143-146. GAO B C,TAO B W.Prediction of concrete strength based on SVR algorithm [J].City & House,2019(4):143-146 (in Chinese). [6] 陈通箭,袁发涛.基于支持向量机的轨道车站客流高峰期持续时间预测[J].智能城市,2020,6(8):10-12. CHEN T J,YUAN F T.Prediction of peak passenger flow duration in rail station based on support vector machine[J].Intelligent City,2020,6(8):10-12 (in Chinese). [7] 薛同来,赵冬晖,韩 菲.基于GA优化的SVR水质预测模型研究[J].环境工程,2020,38(3):123-127. XUE T L,ZHAO D H,HAN F.SVR water quality prediction model based on ga optimization[J].Environmental Engineering,2020,38(3):123-127 (in Chinese). [8] 刘代刚,周 峥,杨 楠,等.基于最小二乘支持向量机的风功率短期预测[J].陕西电力,2014,42(10):18-21. LIU D G,ZHOU Z,YANG N,et al.Short-term prediction of wind power based on least squares support vector machine[J].Shaanxi Electric Power,2014,42(10):18-21 (in Chinese). [9] 张讲社,郭 高.加权稳健支撑向量回归方法[J].计算机学报,2005,28(7):1171-1177. ZHANG J S,GUO G.Reweighted robust support vector regression method[J].Chinese Journal of Computers,2005,28(7):1171-1177 (in Chinese). [10] 张 翔.基于加权核函数SVR的时间序列预测[J].现代计算机(专业版),2019(6):15-18+22. ZHANG X.Time series prediction based on weighted kernel function SVR[J].Modern Computer,2019(6):15-18+22 (in Chinese). [11] CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297. [12] 周志华.机器学习[M].北京:清华大学出版社,2016:133-137. Zhou Z H.Machine Learning[M].Beijing:Tsinghua University Press,2006:133-137. [13] 赵小敏,曹光斌,费梦钰,等.基于加权类比的软件成本估算方法[J].计算机科学,2018,45(s2):501-504+531. ZHAO X M,CAO G B,FEI M Y,et al.Software cost estimation method based on weighted analogy[J].Computer Science,2018,45(s2):501-504+531 (in Chinese). [14] DUA D,GRAFF C.UCI Machine Learning Repository[DB/OL].(2020-07-22) [2020-08-03].http://archive.ics.uci.edu/ml. [15] 王静娜.基于随机森林算法的二手车估价模型研究[D].北京:北京交通大学,2019:26. WANG J N.Research on used vehicle valuation model based on random forest algorithm[D].Beijing:Beijing Jiaotong University,2019:26 (in Chinese). [16] 闫云凤.基于决策森林的回归模型方法研究及应用[D].杭州:浙江大学,2019. YAN Y F.Research and application of regression model method based on decision forest[D].Hangzhou:Zhejiang University,2019 (in Chinese). [17] 尤晓东,苏崇宇,汪毓铎.BP神经网络算法改进综述[J].民营科技,2018(4):146-147. YOU X D,SU C Y,WANG Y D.Summarization of bp neural network algorithm improvement[J].Private Science and Technology,2018(4):146-147. [18] 刘苏苏,孙立民.支持向量机与RBF神经网络回归性能比较研究[J].计算机工程与设计,2011,32(12):4202-4205. LIU S S,SUN L M.Performance comparison of regression prediction on support vector machine and RBF neural network[J].Computer Engineering and Design,2011,32(12):4202-4205 (in Chinese). |