欢迎访问《硅酸盐通报》官方网站,今天是

硅酸盐通报 ›› 2017, Vol. 36 ›› Issue (11): 3853-3859.

• • 上一篇    下一篇

自密实混凝土配合比对其蒸养后强度的影响预测

杨泽宇;孙红;李晓;喻明富   

  1. 沈阳建筑大学,沈阳,110168
  • 出版日期:2017-11-15 发布日期:2021-01-18
  • 基金资助:
    国家"十二五"科技支撑项目(2011BAJ02B05)

Impact Prediction of Mix Proportions on Strength of SCC in Steam-cured Condition

YANG Ze-yu;SUN Hong;LI Xiao;YU Ming-fu   

  • Online:2017-11-15 Published:2021-01-18

摘要: 为了研究配合比对自密实混凝土蒸养后强度的影响及对其进行精确地预测,论文设计了27组自密实混凝土配合比,通过试验的方法测得蒸养制度下的出窑强度和28 d龄期强度,分析了配合比中不同参数对其强度的影响;并利用人工神经网络,建立了自密实混凝土配合比-强度模型.研究结果表明:在一定程度下,提高水泥用量,自密实混凝土强度越大;提高水胶比和砂率,自密实混凝土强度略微降低.基于人工神经网络建立的预测模型,可以在一定范围内准确预测自密实混凝土强度,对自密实混凝土的实际应用与推广有着重要意义.

关键词: 自密实混凝土;配合比;强度;人工神经网络

Abstract: To research the impact of mix proportions on strength of SCC in steam-cured condition,in this thesis,27 sets of self-compacting concrete(SCC)mix proportions were designed in order to test Kilned and 28 d strength curing in steam method,analyzing the impacts of parameters to Kilned and 28 d strength. The results of research show that when water-binder ratio keeps constant,the strength increases with increase of cement content or decrease of water-binder ratio and sand ratio. Meanwhile,prediction model based on artificial neural network(ANN)is able to predict SCC strength precisely within limits, which can be beneficial to application and promotion of SCC.

Key words: self-compacting concrete(SCC);mix proportion;strength;artificial neural network(ANN)

中图分类号: