[1] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of epsilon and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514. [2] MILTON G W, CHERKAEV A V. Which elasticity tensors are realizable?[J]. Journal of Engineering Materials and Technology, 1995, 117(4): 483-493. [3] REN X, DAS R, TRAN P, et al. Auxetic metamaterials and structures: a review[J]. Smart Materials and Structures, 2018, 27(2): 023001. [4] AMENDOLA A, SMITH C J, GOODALL R, et al. Experimental response of additively manufactured metallic pentamode materials confined between stiffening plates[J]. Composite Structures, 2016, 142: 254-262. [5] 竺 清, 张海军, 韩 磊, 等. 机械超材料研究进展[J]. 稀有金属材料与工程, 2021, 50(10): 3786-3796. ZHU Q, ZHANG H J, HAN L, et al. Research progress of mechanical metamaterials[J]. Rare Metal Materials and Engineering, 2021, 50(10): 3786-3796 (in Chinese). [6] YU X L, ZHOU J, LIANG H Y, et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review[J]. Progress in Materials Science, 2018, 94: 114-173. [7] JIA P Z, WU D, ZHANG Q Q, et al. Design of thermal metamaterials with excellent thermal control functions by using functional nanoporous graphene[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2020, 14(10): 2000333. [8] SONG H, DING X D, CUI Z X, et al. Research progress and development trends of acoustic metamaterials[J]. Molecules, 2021, 26(13): 4018. [9] KADIC M, BÜCKMANN T, SCHITTNY R, et al. Metamaterials beyond electromagnetism[J]. Reports on Progress in Physics, 2013, 76(12): 126501. [10] 韩 剑, 孙士勇, 牛 斌, 等. 树脂基复合材料点阵结构的制造技术研究进展[J]. 航空学报, 2023, 44(9): 628255. HAN J, SUN S Y, NIU B, et al. Progress in manufacturing technologies of resin-based composite lattice structures[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 628255 (in Chinese). [11] 于相龙, 周 济. 力学超材料的构筑及其超常新功能[J]. 中国材料进展, 2019, 38(1): 14-21+41. YU X L, ZHOU J. Mechanical metamaterials: architected materials and unexplored properties[J]. Materials China, 2019, 38(1): 14-21+41 (in Chinese). [12] 常玉萍, 马丕波. 负泊松比经编间隔织物的准静态拉伸性能[J]. 纺织学报, 2018, 39(4): 47-53. CHANG Y P, MA P B. Tensile properties under quasi-static of auxetic warp-knitted spacer fabrics[J]. Journal of Textile Research, 2018, 39(4): 47-53 (in Chinese). [13] BRÛLÉ S, ENOCH S, GUENNEAU S. Emergence of seismic metamaterials: current state and future perspectives[J]. Physics Letters A, 2020, 384(1): 126034. [14] LAKES R. Foam structures with a negative Poisson's ratio[J]. Science, 1987, 235(4792): 1038-1040. [15] ASAD M, DHANASEKAR M, ZAHRA T, et al. Characterisation of polymer cement mortar composites containing carbon fibre or auxetic fabric overlays and inserts under flexure[J]. Construction and Building Materials, 2019, 224: 863-879. [16] 周宏元, 贾昆程, 王小娟, 等. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能[J]. 复合材料学报, 2020, 37(8): 2005-2014. ZHOU H Y, JIA K C, WANG X J, et al. In-plane compression properties of negative Poisson's ratio sandwich structure filled with foam concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2005-2014 (in Chinese). [17] WANG X J, JIA K C, LIU Y, et al. In-plane impact response of graded foam concrete-filled auxetic honeycombs[J]. Materials, 2023, 16(2): 745. [18] ZHONG R, REN X, ZHANG X Y, et al. Mechanical properties of concrete composites with auxetic single and layered honeycomb structures[J]. Construction and Building Materials, 2022, 322: 126453. [19] TZORTZINIS G, GROSS A, GERASIMIDIS S. Auxetic boosting of confinement in mortar by 3D reentrant truss lattices for next generation steel reinforced concrete members[J]. Extreme Mechanics Letters, 2022, 52: 101681. [20] CHEN M, CHEN Z G, XUAN Y W, et al. Static and dynamic compressive behaviour of 3D printed auxetic lattice reinforced ultra-high performance concrete[J]. Cement and Concrete Composites, 2023, 139: 105046. [21] ZHONG R, REN X, ZHANG X Y, et al. Mechanical properties of concrete composites with auxetic single and layered honeycomb structures [J]. Construction and Building Materials, 2022, 322: 126453. [22] HUANG X H, YANG J, AZIM I, et al. Geometric non-linear analysis of auxetic hybrid laminated beams containing CNT reinforced composite materials[J]. Materials, 2020, 13(17): 3718. [23] XU Y D, ZHANG H Z, SCHLANGEN E, et al. Cementitious cellular composites with auxetic behavior[J]. Cement and Concrete Composites, 2020, 111: 103624. [24] SCHAEDLER T A, JACOBSEN A J, TORRENTS A, et al. Ultralight metallic microlattices[J]. Science, 2011, 334(6058): 962-965. [25] ZHANG X, VYATSKIKH A, GAO H J, et al. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6665-6672. [26] ZHENG X Y, SMITH W, JACKSON J, et al. Multiscale metallic metamaterials[J]. Nature Materials, 2016, 15(10): 1100-1106. [27] BAUER J, SCHROER A, SCHWAIGER R, et al. Approaching theoretical strength in glassy carbon nanolattices[J]. Nature Materials, 2016, 15(4): 438-443. [28] YANG H, WANG B, MA L. Designing hierarchical metamaterials by topology analysis with tailored Poisson's ratio and Young's modulus[J]. Composite Structures, 2019, 214: 359-378. [29] BÜCKMANN T, STENGER N, KADIC M, et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography[J]. Advanced Materials, 2012, 24(20): 2710-2714. [30] SHOKRI RAD M, PRAWOTO Y, AHMAD Z. Analytical solution and finite element approach to the 3D re-entrant structures of auxetic materials[J]. Mechanics of Materials, 2014, 74: 76-87. [31] GIBSON L, ASHBY M F. Cellular solids: structure and properties[M]. United Kingdom: Cambridge University Press, 1997. [32] EVANS K E, ALDERSON A. Auxetic materials: functional materials and structures from lateral thinking![J]. Advanced Materials, 2000, 12(9): 617-628. [33] 周宏元, 樊家乐, 王小娟, 等. 填充泡沫混凝土铝管组合挂板的吸能性能[J]. 复合材料学报, 2023, 40(5): 2885-2896. ZHOU H Y, FAN J L, WANG X J, et al. Energy absorption of foam concrete filled aluminum tube composite cladding[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2885-2896 (in Chinese). |