[1] ZHANG Z Y, WANG B. Research on the life-cycle CO2 emission of China’s construction sector[J]. Energy and Buildings, 2016, 112: 244-255. [2] 宋 强, 张 鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2): 398-410. SONG Q, ZHANG P, BAO J W, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 398-410 (in Chinese). [3] 宋 强, 邹颖杰, 张 鹏, 等. 泡沫混凝土气泡性能与基体材料研究进展[J]. 硅酸盐学报, 2024, 52(2): 706-724. SONG Q, ZOU Y J, ZHANG P, et al. Research progress on foam performance and matrix materials for foam concrete[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 706-724 (in Chinese). [4] FAN D Q, ZHANG C P, LI X S, et al. Development of foam concrete toward high strength and CO2 sequestration[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(45): 16622-16637. [5] 刘宇航, 罗 平, 蒋杉平, 等. 预养护与碳化时间对泡沫混凝土碳化效果的影响及分析[J]. 硅酸盐通报, 2024, 43(11): 4027-4035. LIU Y H, LUO P, JIANG S P, et al. Influences of preconditioning and carbonization time on carbonization effect of foam concrete and analysis[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(11): 4027-4035 (in Chinese). [6] CHEN T F, ZHAO L Y, GAO X J, et al. Modification of carbonation-cured cement mortar using biochar and its environmental evaluation[J]. Cement and Concrete Composites, 2022, 134: 104764. [7] YE P, GUO B L, QIN H Y, et al. Investigation of the effects of the biochar in different fractions on cement composites[J]. Cement and Concrete Composites, 2025, 162: 106142. [8] SENADHEERA S S, GUPTA S, KUA H W, et al. Application of biochar in concrete: a review[J]. Cement and Concrete Composites, 2023, 143: 105204. [9] ZHANG J Y, SU Y L, ZHANG C, et al. Alterations in rheo-viscoelastic properties of cement composites with biochar incorporation as bio-based admixture[J]. Construction and Building Materials, 2024, 439: 137358. [10] FAN D Q, ZHANG C P, LU J X, et al. Rheology dependent pore structure optimization of high-performance foam concrete[J]. Cement and Concrete Research, 2025, 188: 107737. [11] FAWZY S, OSMAN A I, MEHTA N, et al. Atmospheric carbon removal via industrial biochar systems: a techno-economic-environmental study[J]. Journal of Cleaner Production, 2022, 371: 133660. [12] YE P, GUO B L, QIN H Y, et al. Investigation of the properties and sustainability of modified biochar-doped cement-based composite[J]. Cement and Concrete Composites, 2024, 153: 105684. [13] FAN S C, SUN Y, YANG T H, et al. Biochar derived from corn stalk and polyethylene co-pyrolysis: characterization and Pb(II) removal potential[J]. RSC Advances, 2020, 10(11): 6362-6376. [14] 范定强, 陆建鑫, 刘康宁, 等. 高强二氧化碳泡沫混凝土的设计、制备与宏微观特性[J]. 硅酸盐学报, 2025, 53(5): 1193-1204. FAN D Q, LU J X, LIU K N, et al. High-strength carbon dioxide foam concrete: design, preparation and characteristics[J]. Journal of the Chinese Ceramic Society, 2025, 53(5): 1193-1204 (in Chinese). [15] FAN D Q, LU J X, LV X S, et al. Carbon capture and storage CO2 foam concrete towards higher performance: design, preparation and characteristics[J]. Cement and Concrete Composites, 2025, 157: 105925. [16] FUNK J E, DINGER D R. Predictive process control of crowded particulate suspensions: applied to ceramic manufacturing[M]. Berlin: Springer Science & Business Media, 2013. [17] 余 睿, 范定强, 水中和, 等. 基于颗粒最紧密堆积理论的超高性能混凝土配合比设计[J]. 硅酸盐学报, 2020, 48(8): 1145-1154. YU R, FAN D Q, SHUI Z H, et al. Mix design of ultra-high performance concrete based on particle densely packing theory[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1145-1154 (in Chinese). [18] ZHANG D, GHOULEH Z, SHAO Y X. Review on carbonation curing of cement-based materials[J]. Journal of CO2 Utilization, 2017, 21: 119-131. [19] DENG J X, GU L, WANG P, et al. Developing sustainable steel slag-based aerated concrete: effects of accelerated carbonation on performance and carbon emissions[J]. Journal of Building Engineering, 2024, 98: 111051. [20] 黄从斌, 邰洪生, 罗居刚. 预湿生物炭对超高性能混凝土自收缩和抗压强度的影响[J]. 硅酸盐通报, 2025, 44(7): 2458-2464. HUANG C B, TAI H S, LUO J G. Effect of pre-wetted biochar on autogenous shrinkage and compressive strength of ultra-high performance concrete[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(7): 2458-2464 (in Chinese). [21] PRANEETH S, GUO R N, WANG T, et al. Accelerated carbonation of biochar reinforced cement-fly ash composites: enhancing and sequestering CO2 in building materials[J]. Construction and Building Materials, 2020, 244: 118363. [22] SCRIVENER K, SNELLINGS R, LOTHENBACH B, et al. A practical guide to microstructural analysis of cementitious materials[M]. Boca Raton: CRC Press, 2016. [23] WANG L, CHEN L, TSANG D C W, et al. Biochar as green additives in cement-based composites with carbon dioxide curing[J]. Journal of Cleaner Production, 2020, 258: 120678. [24] KAVIANY M. Principles of heat transfer in porous media[M]. Berlin: Springer Science & Business Media, 2012. [25] DIXIT A, GUPTA S, PANG S D, et al. Waste valorisation using biochar for cement replacement and internal curing in ultra-high performance concrete[J]. Journal of Cleaner Production, 2019, 238: 117876. [26] ZHANG Y Y, LI M D, ZHU X H, et al. Enhanced thermal insulation of biochar-gypsum composites[J]. Cement and Concrete Composites, 2025, 159: 106013. [27] MÜLLER H S, HAIST M, VOGEL M. Assessment of the sustainability potential of concrete and concrete structures considering their environmental impact, performance and lifetime[J]. Construction and Building Materials, 2014, 67: 321-337. |