硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 288-298.DOI: 10.16552/j.cnki.issn1001-1625.2025.0612
胡思佳1,2(
), 谢海磊3, 周坤1,2, 多树旺1,2, 施江1,2(
)
收稿日期:2025-06-23
修订日期:2025-08-25
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
施 江,博士,讲师。E-mail:whutsj@126.com
作者简介:胡思佳(2001—),女,硕士研究生。主要从事微晶玻璃方面的研究。E-mail:Pumpkinhu@126.com
基金资助:
HU Sijia1,2(
), XIE Hailei3, ZHOU Kun1,2, DUO Shuwang1,2, SHI Jiang1,2(
)
Received:2025-06-23
Revised:2025-08-25
Published:2026-01-20
Online:2026-02-10
摘要:
不含SiO2的新型硼铝酸盐玻璃具备优异的抗开裂能力,在玻璃盖板领域具有应用潜力。本文采用高温熔融浇注法成功制备了含La2O3的硼铝酸盐微晶玻璃,并系统研究了一步热处理温度对结构与性能的影响。结果表明:随着热处理温度由585 ℃升高至630 ℃,玻璃网络中的[BO3]逐渐向[BO4]四面体配位转化,LiAl7B4O17与Li2AlB5O10晶相开始析出且含量增加;晶粒尺寸增大,形貌从颗粒状发展为颗粒-短棒共存状态,结晶度显著提升,从49.6%增至88.9%,550 nm可见光透过率从87.28%降至57.75%。随着热处理温度的提高,维氏硬度逐渐增加,在600 ℃热处理条件下样品表现出最佳综合性能,维氏硬度达到6.24 GPa,断裂韧性为1.12 MPa·m1/2,可见光透过率为87.28%,抗开裂能力为19.1 N。这表明通过优化热处理温度可以实现高硬度、高透光性与耐损伤性的协同提升,为高性能透明微晶玻璃盖板材料的设计提供了新的途径。
中图分类号:
胡思佳, 谢海磊, 周坤, 多树旺, 施江. 一步法热处理温度对透明Li2O-Al2O3-B2O3-La2O3系微晶玻璃结构与性能的影响[J]. 硅酸盐通报, 2026, 45(1): 288-298.
HU Sijia, XIE Hailei, ZHOU Kun, DUO Shuwang, SHI Jiang. Effect of Single-Step Heat Treatment Temperature on Structure and Properties of Transparent Li2O-Al2O3-B2O3-La2O3 Glass-Ceramics[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 288-298.
| 原料 | 纯度 | 生产厂家 |
|---|---|---|
| Li2CO3 | 分析纯 AR | 国药集团化学试剂有限公司 |
| Al2O3 | 分析纯 AR | 国药集团化学试剂有限公司 |
| B2O3 | 分析纯 AR | 国药集团化学试剂有限公司 |
| TiO2 | 化学纯 CP | 国药集团化学试剂有限公司 |
| NH4H2PO4 | 分析纯 AR | 西陇科学股份有限公司 |
| CaCO3 | 分析纯 AR | 国药集团化学试剂有限公司 |
| La2O3 | 分析纯 AR | 国药集团化学试剂有限公司 |
表1 原料及生产厂家
Table 1 Raw materials and manufacturers
| 原料 | 纯度 | 生产厂家 |
|---|---|---|
| Li2CO3 | 分析纯 AR | 国药集团化学试剂有限公司 |
| Al2O3 | 分析纯 AR | 国药集团化学试剂有限公司 |
| B2O3 | 分析纯 AR | 国药集团化学试剂有限公司 |
| TiO2 | 化学纯 CP | 国药集团化学试剂有限公司 |
| NH4H2PO4 | 分析纯 AR | 西陇科学股份有限公司 |
| CaCO3 | 分析纯 AR | 国药集团化学试剂有限公司 |
| La2O3 | 分析纯 AR | 国药集团化学试剂有限公司 |
| Sample | L-585 | L-600 | L-615 | L-630 |
|---|---|---|---|---|
| Crystallization temperature/℃ | 585 | 600 | 615 | 630 |
| Insulation time/h | 2 | 2 | 2 | 2 |
表2 玻璃样品热处理制度
Table 2 Heat treatment regime for glass samples
| Sample | L-585 | L-600 | L-615 | L-630 |
|---|---|---|---|---|
| Crystallization temperature/℃ | 585 | 600 | 615 | 630 |
| Insulation time/h | 2 | 2 | 2 | 2 |
| Sample | L-20 | L-585 | L-600 | L-615 | L-630 |
|---|---|---|---|---|---|
| Crystallinity degree/% | 0 | 0 | 49.6 | 65.2 | 88.9 |
| LiAl7B4O17 content/% | 0 | 0 | 43.2 | 54.4 | 64.3 |
| Li2AlB5O10 content/% | 0 | 0 | 6.4 | 10.8 | 24.6 |
表3 不同热处理温度下微晶玻璃的结晶度及晶相含量
Table 3 Crystallinity and crystal phase content of glass-ceramics at different heat treatment temperatures
| Sample | L-20 | L-585 | L-600 | L-615 | L-630 |
|---|---|---|---|---|---|
| Crystallinity degree/% | 0 | 0 | 49.6 | 65.2 | 88.9 |
| LiAl7B4O17 content/% | 0 | 0 | 43.2 | 54.4 | 64.3 |
| Li2AlB5O10 content/% | 0 | 0 | 6.4 | 10.8 | 24.6 |
| Sample | L-20 | L-585 | L-600 | L-615 | L-630 |
|---|---|---|---|---|---|
| Transmittance/% | 89.19 | 89.94 | 87.28 | 85.85 | 57.75 |
表4 不同热处理温度下微晶玻璃样品在550 nm波长下的可见光透过率
Table 4 Visible light transmittance of glass-ceramics at 550 nm wavelength at different heat treatment temperatures
| Sample | L-20 | L-585 | L-600 | L-615 | L-630 |
|---|---|---|---|---|---|
| Transmittance/% | 89.19 | 89.94 | 87.28 | 85.85 | 57.75 |
| [1] |
KADATHALA L, PARK Y O, OH M K, et al. Analysis of the dielectric properties of alkali-free aluminoborosilicate glasses by considering the contributions of electronic and ionic polarizabilities in the GHz frequency range[J]. Materials, 2024, 17(6): 1404.
DOI URL |
| [2] |
GONZALEZ-GUTIERREZ J, CANO S, SCHUSCHNIGG S, et al. Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives[J]. Materials, 2018, 11(5): 840.
DOI URL |
| [3] |
LI H L, XING Z B, XU S Q, et al. 3D simulation of borosilicate glass all-electric melting furnaces[J]. Journal of the American Ceramic Society, 2014, 97(1): 141-149.
DOI URL |
| [4] |
JANUCHTA K, YOUNGMAN R E, GOEL A, et al. Discovery of ultra-crack-resistant oxide glasses with adaptive networks[J]. Chemistry of Materials, 2017, 29(14): 5865-5876.
DOI URL |
| [5] |
ZHANG Q, SUN D M, DU T, et al. High damage-resistance and fracture toughness of transparent Nb-doped barium aluminoborate glass ceramics[J]. Applied Materials Today, 2023, 34: 101888.
DOI URL |
| [6] |
GAJEK M, LEŚNIAK M, SITARZ M, et al. The crystallization and structure features of glass within the K2O-MgO-CaO-Al2O3-SiO2-(BaO) system[J]. Journal of Molecular Structure, 2020, 1220: 128747.
DOI URL |
| [7] | DENG L, DU J C. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations[J]. Journal of Chemical Physics, 2018, 148(2): 024504. |
| [8] |
ABOELWAFA M A, ABDELGHANY A M, ORABY A H, et al. Distinctive structural and biophysical features of sol-gel synthesized alumino/silicate glass-ceramic containing cerium oxide[J]. Optical and Quantum Electronics, 2024, 56(4): 627.
DOI |
| [9] |
LI L, WEI Y J, FENG Q, et al. A review: progress in molecular dynamics simulation of Portland cement (geopolymer): based composites and the interface between these matrices and reinforced material[J]. Buildings, 2023, 13(7): 1875.
DOI URL |
| [10] |
SAYYED M I, MAHMOUD K A, ARAYRO J, et al. An extensive assessment of the impacts of BaO on the mechanical and gamma-ray attenuation properties of lead borosilicate glass[J]. Scientific Reports, 2024, 14: 5429.
DOI PMID |
| [11] |
ZHANG X Y, PENG H B, LIU F F, et al. Mechanical properties of borosilicate glass with different irradiation of heavy ions[J]. Journal of Inorganic Materials, 2019, 34(7): 741.
DOI URL |
| [12] |
CAO C H, MUKHERJEE S, HOWE J Y, et al. Nonlinear fracture toughness measurement and crack propagation resistance of functionalized graphene multilayers[J]. Science Advances, 2018, 4(4): 7202.
DOI PMID |
| [13] |
KIM S W, LEE H S, JUN D S, et al. Enhancing the plasma-resistance properties of Li2O-Al2O3-SiO2 glasses for the semiconductor etch process via alkaline earth oxide incorporation[J]. Materials, 2023, 16(14): 5112.
DOI URL |
| [14] |
FABIAN M, PINAKIDOU F, TOLNAI I, et al. Lanthanide (Ce, Nd, Eu) environments and leaching behavior in borosilicate glasses[J]. Scientific Reports, 2021, 11(1): 13272.
DOI |
| [15] |
XIA K L, GUAN Y N, GU J R, et al. Structural evolution of Ge20Se80– x Te x glass networks and assessment of glass properties by theoretical bandgap[J]. Acta Physica Sinica, 2024, 73(14): 146303.
DOI URL |
| [16] |
LI X Z, WANG Y H, YANG P H, et al. Effect of Y2O3/La2O3 on structure and mechanical properties of Li2O-Al2O3-SiO2 glass[J]. Journal of Non-Crystalline Solids, 2022, 596: 121847.
DOI URL |
| [17] |
SUN D M, ZHANG Q, DU T, et al. Damage resistant and tolerant glass-ceramics with low-thermal expansion crystals[J]. Journal of the European Ceramic Society, 2025, 45(7): 117226.
DOI URL |
| [18] |
CHEN H, ZHANG M, ZHAO M, et al. Effect of La2O3-CeO2 codoping on the microstructure and mechanical properties of tailing glass-ceramics[J]. Ceramics International, 2024, 50(5): 7636-7644.
DOI URL |
| [19] |
YU X J, WANG M Z, RAO Y, et al. Unveiling the evolution of early phase separation induced by P2O5 for controlling crystallization in lithium disilicate glass system[J]. Journal of the European Ceramic Society, 2023, 43(12): 5381-5389.
DOI URL |
| [20] |
XIE H L, ZHOU K, HU S J, et al. Enhancement of damage resistance of transparent Li2O-Al2O3-B2O3 glass by crystallization[J]. Journal of Non-Crystalline Solids, 2024, 631: 122911.
DOI URL |
| [21] |
TIAN S, ZHOU M, SHEN H Y, et al. Low thermal expansion coefficient LAS glass-ceramics with petalite as the main crystal phase[J]. Journal of Non-Crystalline Solids, 2025, 649: 123338.
DOI URL |
| [22] |
HE F, ZHI J Y, HE Z J, et al. Preparation of low thermal expansion, transparent LAS glass-ceramics via simplified heat-treatment method[J]. Ceramics International, 2024, 50(21): 41654-41663.
DOI URL |
| [23] |
NASSER K, EL-ETREBY A, NABIH S O. The influence of thermal tempering on the fracture resistance, surface microstructure, elemental surface composition, and phase analysis of four heat-pressed lithia-based glass ceramic crowns[J]. BMC Oral Health, 2025, 25(1): 192.
DOI |
| [24] |
ZHU X P, HUO Y D, ZHAO R M, et al. One-step microcrystalline glass preparation using smelting slag from waste automobile three-way catalysts through iron collection[J]. Applied Sciences, 2022, 12(22): 11723.
DOI URL |
| [25] |
JOLLY A, VITRY V, AZAR G T P, et al. Surface defect mitigation of additively manufactured parts using surfactant-mediated electroless nickel coatings[J]. Materials, 2024, 17(2): 406.
DOI URL |
| [26] |
LANNAY H, FOUVRY S, BERTHEL B, et al. Stability of the critical distance method for fretting cracking prediction: influence of microstructure and crack nucleation size[J]. Tribology International, 2023, 186: 108570.
DOI URL |
| [27] |
AL-KAFAJI M, AL-BUSALTAN S, KADHIM M A, et al. Investigating the impact of polymer and Portland cement on the crack resistance of half-warm bituminous emulsion mixtures[J]. Sustainability, 2023, 15(21): 15256.
DOI URL |
| [28] | KAUR M, SAINI M S. Synthesis and characterization of lithium borate glasses containing bismuth[J]. International Journal of Advanced Research in Physical Science, 2014, 1(8):1-8. |
| [29] | NAZABAL V. Génération de second harmonique dans des verres oxydés polarisés thermiquement[D]. Bordeaux: Université Sciences et Technologies-Bordeaux I, 1999: 1-204. |
| [30] |
RADA S, CULEA E, NEUMANN M. Experimental and theoretical studies of the structure of tellurate-borate glasses network[J]. Journal of Molecular Modeling, 2010, 16(8): 1333-1338.
DOI PMID |
| [31] |
BARZGAR S, YAN Y R, TARIK M, et al. A long-term study on structural changes in calcium aluminate silicate hydrates[J]. Materials and Structures, 2022, 55(10): 243.
DOI PMID |
| [32] |
DIN H M NEL, SAEED A, SALEM E, et al. A multi-function glass shield for neutrons and gamma rays of boron- and bismuth-reinforced silicate glass[J]. Scientific Reports, 2024, 14: 24472.
DOI PMID |
| [33] |
ABOU HUSSEIN E M, SHABAN S E, RAMMAH Y S, et al. Newly developed CeO2 and Gd2O3-reinforced borosilicate glasses from municipal waste ash and their optical, structural, and gamma-ray shielding properties[J]. Scientific Reports, 2024, 14: 13673.
DOI |
| [34] |
ZHENG D P, MONASTERIO M, FENG W P, et al. Hydration characteristics of tricalcium aluminate in the presence of nano-silica[J]. Nanomaterials, 2021, 11(1): 199.
DOI URL |
| [35] |
ABDEL-WAHAB F, EL-DIASTY F, ABDEL-BAKI M, et al. Variation of structure and optical material dispersion in lead borate glass containing multi valence chromium and germanium cations[J]. Optical and Quantum Electronics, 2021, 53(10): 564.
DOI |
| [36] |
TAN W J, SUN T, MA F K, et al. Molecular dynamics simulation and viscosity analysis of red mud-steel slag glass-ceramics[J]. Materials, 2023, 16(22): 7200.
DOI URL |
| [37] |
KUZ’MIN V, ARTEMENKO A, OGNICHENKO L, et al. Simplex representation of molecular structure as universal QSAR/QSPR tool[J]. Structural Chemistry, 2021, 32(4): 1365-1392.
DOI |
| [38] |
HUANG S J, WANG W Z, JIANG H, et al. Network structure and properties of lithium aluminosilicate glass[J]. Materials, 2022, 15(13): 4555.
DOI URL |
| [39] |
MIAO X T, HONG H S, HONG X Y, et al. Effect of constraint and crack contact closure on fatigue crack mechanical behavior of specimen under negative loading ratio by finite element method[J]. Metals, 2022, 12(11): 1858.
DOI URL |
| [40] |
PHILIPPE K, MARTIN M, et al. Automated analysis of slow crack growth in hydrous soda-lime silicate glasses[J]. Rapid Prototyping Journal, 2020, 7: 268.
DOI URL |
| [41] | WU W, BANGA A, OGUZ U M, et al. Experimental validation and clinical feasibility of 3D reconstruction of coronary artery bifurcation stents using intravascular ultrasound[J]. PLoS One, 2024, 19(4): e0300098. |
| [42] | LIU P F, YOUNGMAN R E, JENSEN L R, et al. Achieving ultrahigh crack resistance in glass through humid aging[J]. Physical Review Materials, 2020, 4(6): 063606. |
| [43] |
LUO X, WANG L H, LÜ L, et al. Forward model of metal magnetic memory testing based on equivalent surface magnetic charge theory[J]. Acta Physica Sinica, 2022, 71(15): 154101.
DOI URL |
| [1] | 王家明, 李静, 杨曙光, 李耀环, 顾凯, 苑博文, 刘东升, 郭启龙. 砂中残留絮凝剂PAM对水泥砂浆流动度影响及其降解方法研究[J]. 硅酸盐通报, 2025, 44(6): 2026-2035. |
| [2] | 雷月恒, 李阔, 李锦涛, 康行健, 卢浩, 李晓光, 刘钦甫. TiO2对高岭岩型煤矸石微晶玻璃析晶行为与性能的影响[J]. 硅酸盐通报, 2025, 44(3): 970-980. |
| [3] | 张仁鑫, 张魁宝, 敬畏, 秦喜龙, 李洁, 王耀智. ZrW2O8对磷酸盐无机胶粘剂结构与性能的影响[J]. 硅酸盐通报, 2025, 44(2): 726-731. |
| [4] | 温中源, 李路瑶, 王静, 韩建军. B2O3对Li2O-ZnO-Al2O3-SiO2微晶玻璃结构与析晶行为的影响[J]. 硅酸盐通报, 2025, 44(12): 4546-4556. |
| [5] | 王衍行, 刘家宇, 李现梓, 杨鹏慧, 竹含真, 韩韬. 高折射率光学玻璃的研究进展[J]. 硅酸盐通报, 2024, 43(9): 3438-3445. |
| [6] | 陈考翔, 王明忠, 饶宇, 崔佳琳, 陶海征, 陆平. ZnO对尖晶石微晶玻璃的析晶和性能影响[J]. 硅酸盐通报, 2024, 43(9): 3446-3454. |
| [7] | 任贝贝, 刘亚鑫, 黄欣, 王霆, 王娜, 姜宏, 熊春荣, 郝红勋. Li2O-Al2O3-SiO2系微晶玻璃的研究进展[J]. 硅酸盐通报, 2024, 43(4): 1181-1196. |
| [8] | 尚楷浡, 李铭涵, 李军葛, 马艳平, 姜宏, 赵亚军, 张吉亮, 董闯. 基于团簇加连接原子模型的一种工业微晶玻璃成分优化初探[J]. 硅酸盐通报, 2024, 43(4): 1257-1266. |
| [9] | 卫志洋, 王晓东, 苏腾, 陈欢乐, 高峰, 苗洋. CaO-B2O3-SiO2微晶玻璃的制备及介电性能[J]. 硅酸盐通报, 2024, 43(4): 1274-1283. |
| [10] | 翟飞龙, 王艺慈, 张云昊, 吕智智, 安胜利, 柴轶凡, 罗果萍. 白云鄂博矿选冶固废烧结法制备微晶玻璃研究[J]. 硅酸盐通报, 2024, 43(4): 1284-1291. |
| [11] | 郑伟宏, 刘国凤, 张浩, 王启东, 张梦豪, 袁坚. Li2O/Na2O对YAS微晶玻璃结构、析晶与力学性能的影响[J]. 硅酸盐通报, 2024, 43(4): 1292-1300. |
| [12] | 郑伟宏, 王启东, 高子鹏, 张浩, 袁坚, 田培静. Na2O对锂铝硅微晶玻璃析晶及性能的影响[J]. 硅酸盐通报, 2024, 43(4): 1301-1307. |
| [13] | 张宝东, 许军锋, 赵华, 祖成奎, 刘永华, 张袆袆, 潘峰, 周鹏. CsCl对Ge20Sb10Se65Te5玻璃结构与性能的影响[J]. 硅酸盐通报, 2024, 43(4): 1318-1324. |
| [14] | 郝霞, 王其琛, 符有杰, 李军葛, 赵会峰, 姜宏, 王卓. Na2O-CaO-SiO2平板玻璃减反射功能化研究[J]. 硅酸盐通报, 2024, 43(4): 1366-1373. |
| [15] | 张兵强, 霍宏越, 石攀, 王三昭, 任宏宇, 刘启蒙. 光吸收玻璃对耐辐照光纤面板性能的影响[J]. 硅酸盐通报, 2024, 43(4): 1374-1379. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||