[1] KUZMIN R, CHERKASOVA N, VESELOV S, et al. Role of t-ZrO2 stabilization methods in phase composition, structure and properties of ZTA ceramics[J]. Journal of the Australian Ceramic Society, 2025, 61(1): 345-359. [2] SU N K, REJAB N A, JOHAR B, et al. The influence of niobia additions on microstructure, vickers hardness and indentation fracture resistance of ZTA ceramic composites[J].Engineering Headway, 2025(15): 29-35. [3] 安 然, 肖建中, 夏 风. TiO2含量对ZTA陶瓷性能的影响[J]. 硅酸盐通报, 2011, 30(1): 191-199. AN R, XIAO J Z, XIA F. The influence of TiO2 content on the properties of ZTA ceramics[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(1): 191-199 (in Chinese). [4] WU H D, LIU W, HE R X, et al. Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing[J]. Ceramics International, 2017, 43(1): 968-972. [5] 周士翔. 基于DLP光固化3D打印的高性能氧化铝基陶瓷及其致密化研究[D]. 武汉: 武汉理工大学, 2022. ZHOU S X. Research on high-performance alumina-based ceramics and their densification based on DLP light-curing 3D printing[D] Wuhan: Wuhan University of Technology, 2022 (in Chinese). [6] 王 赞, 王 浩, 李德玲, 等. 数字光处理生物3D打印技术在医学上的应用发展[J]. 数字印刷, 2022(2): 14-22. WANG Z, WANG H, LI D L, et al. The application and development of digital light processing bio-3D printing technology in medicine[J]. Digital Printing, 2022(2): 14-22 (in Chinese). [7] 陆嘉雄. 基于DLP光固化3D打印氧化锌陶瓷制备技术及性能研究[D]. 北京: 北京工业大学, 2021. LU J X. Research on the preparation technology and properties of zinc oxide ceramics based on DLP light curing 3D printing[D] Beijing: Beijing University of Technology, 2021 (in Chinese). [8] GU Q C, WANG H L, GAO W J, et al. Preparation of large-size alumina ceramic parts by DLP 3D printing using high-solid-loading paste and optimizing the debinding process[J]. Ceramics International, 2023, 49(17): 28801-28812. [9] MA H Q, ZHANG Q, MENG T Y, et al. Design and mechanical/thermal properties of in situ synthesized mullite in SLA 3D printing Al2O3-SiO2 ceramic[J]. Ceramics International, 2025, 51(8): 10726-10737. [10] ZHENG T Q, WANG W, SUN J X, et al. Development and evaluation of Al2O3-ZrO2 composite processed by digital light 3D printing[J]. Ceramics International, 2020, 46(7): 8682-8688. [11] 郑江涛, 张 航, 王胜佳, 等. ZTA陶瓷光固化3D打印参数设计及性能增强研究[J]. 中国陶瓷, 2023, 59(5): 43-49. ZHENG J T, ZHANG H, WANG S J, et al. Research on parameter design and performance enhancement of ZTA ceramic UV curing 3D printing[J]. Chinese Ceramics, 2023, 59 (5): 43-49 (in Chinese). [12] 何 舜, 高晓磊, 李 爽, 等. 氧化铝陶瓷低温烧结助剂研究概述[J]. 陶瓷, 2020(8): 12-15. HE S, GAO X L, LI S, et al. Research overview of low-temperature sintering AIDS for alumina ceramics[J]. Ceramics, 2020(8): 12-15 (in Chinese). [13] XU X H, XIE G B, WU J F, et al. Preparation and thermal shock resistance investigation of ZTA-La2O3 composite ceramics for porous medium combustion materials[J]. Ceramics International, 2023, 49(11): 18645-18653. [14] 陈 旸, 乜玉强, 乔 宁. MgO-TiO2对凝胶注膜ZTA-SiCw口腔托槽材料的影响[J]. 材料导报, 2023, 37(增刊2): 104-108. CHEN Y, HE Y Q, QIAO N. Effect of MgO-TiO2 on ZTA-SiCw oral bracket materials for gel film casting [J]. Materials Herald, 2023, 37(supplement 2): 104-108 (in Chinese). [15] WEI S J, HAN G F, ZHANG X, et al. Preparation of excellent performance ZTA ceramics and complex shaped components using digital light processing 3D printing technology[J]. Journal of Alloys and Compounds, 2024, 980: 173640. [16] SHEN M H, FU R L, XU X Y, et al. Synergistic enhancement of density and curing depth in DLP 3D printed MgO-Y2O3 coated Si3N4 ceramics[J]. Journal of Alloys and Compounds, 2025, 1035: 181459. [17] RASHEED H, IMTIAZ F, ALI A, et al. Box Behnken design-based optimized green synthesis of lanthanum oxide submicroparticles using quercus infectoria galls extract and their antimicrobial activities[J]. Advanced Powder Technology, 2025, 36(7): 104929. [18] GENTRY S P, HALLORAN J W. Depth and width of cured lines in photopolymerizable ceramic suspensions[J]. Journal of the European Ceramic Society, 2013, 33(10): 1981-1988. [19] CHEN T, WANG D Y, CAO Q R, et al. Optimizing photocuring properties of ceramic slurry for 3D printing of ceramic membranes[J]. Ceramics International, 2024, 50(1): 1732-1741. [20] SHENG P F, NIE G L, LI Y H, et al. Enhanced curing behavior, mechanical and thermal properties of 3D printed aluminum nitride ceramics using a powder coating strategy[J]. Additive Manufacturing, 2023, 74: 103732. [21] KONNUNAHO P, ZAKERI S, FRANKBERG E J, et al. Investigation of resin composition and printing parameters on the dimensional accuracy of alumina components fabricated via ceramic vat photopolymerization[J]. Open Ceramics, 2025, 22: 100751. [22] 殷剑龙, 王修慧, 张 野, 等. 烧结助剂对高纯氧化铝陶瓷致密化过程的作用[J]. 稀土, 2014, 35(5): 16-20. YIN J L, WANG X H, ZHANG Y, et al. The effect of sintering aids on the densification process of high purity alumina ceramics [J]. Rare Earth, 2014, 35 (5): 16-20 (in Chinese). [23] 汪 波, 刘 浩, 王周福, 等. 氧化镧对CaO-MgO-SiO2系陶瓷纤维结构与性能的影响[J]. 硅酸盐通报, 2020, 39(3): 916-922. WANG B, LIU H, WANG Z F, et al. The effect of lanthanum oxide on the structure and properties of CaO-MgO-SiO2 ceramic fibers[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 916-922 (in Chinese). [24] 千粉玲, 谢志鹏, 孙加林, 等. La2O3对Al2O3陶瓷显微结构和微波介电性能的影响[J]. 硅酸盐学报, 2012, 40(12): 1708-1712. QIAN F L, XIE Z P, SUN J L, et al. The influence of La2O3 on the microstructure and microwave dielectric properties of Al2O3 ceramics[J]. Journal of Ceramics, 2012, 40(12): 1708-1712 (in Chinese). [25] MA B Y, ZAN W Y, TANG J H, et al. Preparation of MgO-MgAl2O4 refractories doped with La2O3 and the wetting permeation behavior by alkaline slag[J]. Construction and Building Materials, 2024, 447: 138008. [26] ZHANG Y Q, REN C X, ZHOU J, et al. Influence of microwave heating on grain growth behavior and phase stability of nano Y2O3/La2O3 co-doped ZrO2 ceramics[J]. Ceramics International, 2024, 50(6): 8733-8741. [27] ZHANG R Z, HUANG Y X, LI W K, et al. Second phase strengthening and grain boundary segregation effects on the microstructure and properties of (Ce,Y)-TZP-based ceramics prepared by vat photopolymerization[J]. Additive Manufacturing, 2024, 94: 104482. [28] REYES-ROJAS A, TORRES-MOYE E, SOLÍS-CANTO Ó, et al. X-ray diffraction and atomic force microscopy study in aged zirconia-toughened alumina composite with dispersion of m-ZrO2 nanoparticles[J]. International Journal of Refractory Metals & Hard Materials, 2012, 35: 270-278. [29] 郭亚威, 柴建龙, 朱亚滨, 等. MgAl2O4掺杂对ZTA-MgAl2O4复相陶瓷力学及热学性能的影响[J]. 硅酸盐学报, 2019, 47(12): 1717-1722. GUO Y W, CHAI J L, ZHU Y B, et al. Effect of MgAl2O4 doping on mechanical and thermal properties of ZTA-MgAl2O4 multiphase ceramics[J]. Journal of Silicate, 2019, 47(12): 1717-1722 (in Chinese). [30] 蔡 阳. 稀土掺杂ZTA复合陶瓷的制备与性能研究[D]. 郑州: 郑州大学, 2012. CAI Y. Preparation and performance research of rare earth roped ZTA composite ceramics [D]. Zhengzhou: Zhengzhou University, 2012 (in Chinese). [31] 徐晓虹, 孙梦珂, 吴建锋, 等. 掺杂La2O3对刚玉基复相陶瓷的烧结和力学性能的影响[J]. 硅酸盐通报, 2017, 36(10): 3432-3438. XU X H, SUN M K, WU J F, et al. Effect of La2O3 on the sintering and mechanical properties of corundum-based composite ceramics[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(10): 3432-3438 (in Chinese). [32] REJAB N A, AHMAD AZHAR A Z, RATNAM M M, et al. The effects of CeO2 addition on the physical, microstructural and mechanical properties of yttria stabilized zirconia toughened alumina (ZTA)[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 162-166. [33] 周后明, 曾国章, 刘景文, 等. 稀土氧化物La2O3/Y2O3增韧补强ZTA陶瓷材料及其耐磨性能研究[J]. 材料导报, 2016, 30(12): 14-17. ZHOU H M, ZENG G Z, LIU J W, et al. Rare earth oxides La2O3/Y2O3-toughened & reinforced ZTA ceramic and its abrasion resistance[J]. Materials Reports, 2016, 30(12): 14-17 (in Chinese). [34] 冯 杰, 赵介南, 凌可君. CaO-Al2O3-SiO2复合烧结助剂添加量对ZrO2/Al2O3复相陶瓷性能的影响[J]. 粉末冶金技术, 2019, 37(3): 175-183. FENG J, ZHAO J N, LING K J. The influence of the addition amount of CaO-Al2O3-SiO2 composite sintering aid on the properties of ZrO2/Al2O3 multiphase ceramics[J]. Powder Metallurgy Technology, 2019, 37(3): 175-183 (in Chinese). [35] HUSSAIN M I, XIA M, GE C C, et al. Synergistic strengthening mechanism of zirconia-reinforced alumina ceramics through additive manufacturing and sintering[J]. Journal of Manufacturing Processes, 2025, 144: 227-242. [36] GOULAS A, OZKAN B, SAREMI-YARAHMADI S, et al. Formulation-driven additive manufacturing of 3YSZ advanced ceramics via digital light processing[J]. Open Ceramics, 2025, 22: 100785. [37] ZENG Y, CHEN X F, SUN L J, et al. Effect of different sintering additives type on Vat photopolymerization 3D printing of Al2O3 ceramics[J]. Journal of Manufacturing Processes, 2022, 83: 414-426. [38] ZHANG S, SHA N, ZHAO Z. Surface modification of α-Al2O3 with dicarboxylic acids for the preparation of UV-curable ceramic suspensions[J]. Journal of the European Ceramic Society, 2017, 37(4): 1607-1616. [39] 魏思捷. 光固化3D打印制备Al2O3陶瓷和构件及其性能研究[D]. 昌吉: 昌吉学院, 2024. WEI S J. Preparation and properties of Al2O3 ceramics and components by UV curing 3D printing[D]. Changji: Changji University, 2024 (in Chinese). |