[1] 赵家存, 张光磊, 张 诚, 等. Si3N4陶瓷在现代产业中的应用[J]. 中国陶瓷工业, 2024, 31(1): 35-43. ZHAO J C, ZHANG G L, ZHANG C, et al. Application of Si3N4 ceramics in modern industry[J]. China Ceramic Industry, 2024, 31(1): 35-43 (in Chinese). [2] RAMIREZ C, MIRANZO P, BELMONTE M, et al. Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets[J]. Journal of the European Ceramic Society, 2014, 34(2): 161-169. [3] 李 涛, 张 博, 魏智磊, 等. 放电等离子体烧结结合高温热处理制备高强高导热氮化硅陶瓷[J]. 硅酸盐学报, 2024, 52(9): 2934-2941. LI T, ZHANG B, WEI Z L, et al. High-strength and high-heat-conductivity silicon nitride ceramics were prepared by SPS combined with high-temperature heat treatment[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2934-2941 (in Chinese). [4] 叶超超, 王 伟, 茹红强, 等. 反应烧结Si3N4陶瓷材料的力学性能及微观组织[J]. 材料与冶金学报, 2024, 23(1): 48-53+85. YE C C, WANG W, RU H Q, et al. Investigation on properties and microstructure of reaction-sintered Si3N4 ceramics[J]. Journal of Materials and Metallurgy, 2024, 23(1): 48-53+85 (in Chinese). [5] 朱宇璇, 智 强, 王 波, 等. α-Si3N4粉体原料对多孔氮化硅陶瓷微观组织和力学性能的影响[J]. 硅酸盐学报, 2019, 47(9): 1254-1260. ZHU Y X, ZHI Q, WANG B, et al. Effects of α-Si3N4 powders on microstructure and mechanical property of porous silicon nitride ceramics[J]. Journal of the Chinese Ceramic Society, 2019, 47(9): 1254-1260 (in Chinese). [6] YU J, GUO W, WEI W, et al. Fabrication and wear behaviors of graded Si3N4 ceramics by the combination of two-step sintering and β-Si3N4 seeds[J]. Journal of the European Ceramic Society, 2018, 38(10): 3457-3462. [7] HUANG J W, LV X A, DONG X F, et al. Microstructure and mechanical properties of α/β-Si3N4 composite ceramics with novel ternary additives prepared via spark plasma sintering[J]. Ceramics International, 2022, 48(20): 30376-30383. [8] 林锐霖, 顾乾坤, 罗嗣春, 等. 高熵硼化物含量对Si3N4陶瓷显微结构与性能的影响[J]. 硅酸盐学报, 2022, 50(6): 1499-1503. LIN R L, GU Q K, LUO S C, et al. Effect of high-entropy boride content on microstructure and mechanical properties of silicon nitride ceramics[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1499-1503 (in Chinese). [9] KOIZUMI M. FGM activities in Japan[J]. Composites Part B: Engineering, 1997, 28(1/2): 1-4. [10] SALEH B, JIANG J H, FATHI R, et al. 30 Years of functionally graded materials: an overview of manufacturing methods, applications and future challenges[J]. Composites Part B: Engineering, 2020, 201: 108376. [11] 赵东升. Si3N4/SiC梯度复相陶瓷制备及性能研究[D]. 武汉: 武汉理工大学, 2021. ZHAO D S. Preparation and performance research of Si3N4/SiC graded multiphase ceramics[D]. Wuhan: Wuhan University of Technology, 2021 (in Chinese). [12] SUN J W, JING Q, LEI L W, et al. Compositional gradient affects the residual stress distribution in Si3N4/SiC functionally graded materials[J]. Ceramics International, 2023, 49(11): 19281-19289. [13] LEE C S, AHN S H, DEJONGHE L C, et al. Effect of functionally graded material (FGM) layers on the residual stress of polytypoidally joined Si3N4-Al2O3[J]. Materials Science and Engineering: A, 2006, 434(1/2): 160-165. [14] BELMONTE M, GONZÁLEZ-JULIÁN J, MIRANZO P, et al. Spark plasma sintering: a powerful tool to develop new silicon nitride-based materials[J]. Journal of the European Ceramic Society, 2010, 30(14): 2937-2946. [15] TORRESANI E, PARK C, GRIPPI T, et al. Complex shape transparent Al2O3 fabricated by integrated spark plasma sintering-additive manufacturing technology[J]. Ceramics International, 2024, 50(19): 37332-37340. [16] 王潘奕, 蔡沐之, 华有杰, 等. 放电等离子烧结技术制备光功能玻璃及玻璃陶瓷[J]. 激光与光电子学进展, 2022, 59(15): 116-124. WANG P Y, CAI M Z, HUA Y J, et al. Preparation of optical functional glass and glass ceramics by SPS technology[J]. Laser & Optoeletronics Progress, 2022,59(15):116-124 (in Chinese). [17] ZHAO Q Q, WANG H, TU B T, et al. KNbTeO6 transparent ceramics prepared by the combination of pressure-less sintering and pseudo hot isostatic pressing[J]. Journal of the European Ceramic Society, 2023, 43(9): 4226-4231. [18] SHI Y W, WANG J H, REN Y C, et al. Prediction and fabrication of textured Si3N4 ceramics via grain rotation model[J]. Materials & Design, 2024, 245: 113275. [19] ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements[J]. Journal of the American Ceramic Society, 1981, 64(9): 533-538. [20] KUSUNOSE T, SEKINO T, CHOA Y H, et al. Fabrication and microstructure of silicon nitride/boron nitride nanocomposites[J]. Journal of the American Ceramic Society, 2002, 85(11): 2678-2688. [21] YADAV A, BAJTOŠOVÁ L, CIESLAR M, et al. Two-phase model for inverse Hall-Petch effect in nanocrystalline thin film: atomistic simulation study[J]. Acta Materialia, 2024, 276: 120084. [22] 于俊杰, 管甲锁, 郭伟明, 等. 基于高SiO2含量的Si3N4基陶瓷显微结构与力学性能[J]. 硅酸盐学报, 2016, 44(12): 1713-1717. YU J J, GUAN J S, GUO W M, et al. Microstructure and mechanical properties of Si3N4 ceramic with high SiO2 content[J]. Journal of the Chinese Ceramic Society, 2016, 44(12): 1713-1717 (in Chinese). [23] HU H L, ZENG Y P, ZUO K H, et al. Effect of sintering additive composition on the mechanical and tribological properties of SiC ceramics[J]. Journal of Inorganic Materials, 2014, 29(8): 885. [24] TRUNG T B, ZUHAILAWATI H, AHMAD Z A, et al. Grain growth, phase evolution and properties of NbC carbide-doped WC-10AISI304 hardmetals produced by pseudo hot isostatic pressing[J]. Journal of Alloys and Compounds, 2013, 552: 20-25. [25] LI M X, MO R, ZHOU J, et al. Microstructure control of porous Si3N4 whisker scaffolds by in situ carbothermal reduction and nitridation reaction[J]. Journal of the European Ceramic Society, 2023, 43(16): 7354-7362. [26] LUO J, LI J G, LI M J, et al. Low-temperature densification by plasma activated sintering of Mg2Si-added Si3N4[J]. Ceramics International, 2019, 45(12): 15128-15133. [27] UCHIDA H, ITATANI K, AIZAWA M, et al. Synthesis of magnesium silicon nitride by the nitridation of powders in the magnesium-silicon system[J]. Journal of the Ceramic Society of Japan, 1997, 105(1227): 934-939. [28] SHI Y W, REN Y C, HE Q L, et al. Fabrication of continuously and symmetrically graded Si3N4-based ceramics under uniformly thermal field[J]. Materials Characterization, 2025, 220: 114665. |