[1] 宋晓展. 高性能钛酸铝陶瓷材料的合成与制备[D]. 武汉: 武汉理工大学, 2022. SONG X Z. Synthesis and preparation of high-performance aluminum titanate ceramic materials [D]. Wuhan: Wuhan University of Technology, 2022 (in Chinese). [2] BORRELL A, SALVADOR M D, ROCHA V G, et al. Enhanced properties of alumina-aluminium titanate composites obtained by spark plasma reaction-sintering of slip cast green bodies[J]. Composites Part B: Engineering, 2013, 47: 255-259. [3] GIORDANO L, VIVIANI M, BOTTINO C, et al. Microstructure and thermal expansion of Al2TiO5-MgTi2O5 solid solutions obtained by reaction sintering[J]. Journal of the European Ceramic Society, 2002, 22(11): 1811-1822. [4] MOROSIN B, LYNCH R W. Structure studies on Al2TiO5 at room temperature and at 600 ℃[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1972, 28(4): 1040-1046. [5] KORNAUS K, RUTKOWSKI P, LACH R, et al. Effect of microstructure on thermal and mechanical properties of solid solutions Al2TiO5-MgTi2O5[J]. Journal of the European Ceramic Society, 2021, 41(2): 1498-1505. [6] KIM S H, KANG E T, KIM U S, et al. Characteristics of the sintered body of the Al2TiO5 with addition of LAS (β-spodumene) and Fe2O3[J]. Journal of the Korean Crystal Growth and Crystal Technology, 2012, 22(1): 57-63. [7] MA Q, SHAN Q L, CHEN C R, et al. The influence of ZrO2 on the microstructure and mechanical properties of Al2TiO5 flexible ceramics[J]. Materials Characterization, 2022, 185: 111719. [8] CHEN C R, MA Q, HE C, et al. Effects of MgO and Fe2O3 additives on the microstructure and fracture properties of aluminium titanate flexible ceramics[J]. Ceramics International, 2023, 49(12): 19806-19816. [9] SHI C G, LOW I M. Effect of spodumene additions on the sintering and densification of aluminum titanate[J]. Materials Research Bulletin, 1998, 33(6): 817-824. [10] 曹爱红. 钛酸铝复相陶瓷的制备及其抗热震性能的研究[D]. 天津: 天津大学, 2004. CAO A H. Preparation and thermal shock resistance of aluminum titanate multiphase ceramics[D]. Tianjin: Tianjin University, 2004 (in Chinese). [11] YAN H, DENG C J, XING G C, et al. Enhanced mechanical properties of SPS sintered h-BN based ceramics with Al3BC3 addition[J]. Journal of Alloys and Compounds, 2024, 1007: 176447. [12] TAN H, ZHANG H, SALAMON D. Densification behavior and mechanical properties of nano-alumina ceramics prepared by spark plasma sintering with pressure applied at different sintering stages[J]. Ceramics International, 2022, 48(20): 30224-30228. [13] GALUSEK D, SEDL E K J, CHOVANEC J, et al. The influence of MgO, Y2O3 and ZrO2 additions on densification and grain growth of submicrometre alumina sintered by SPS and HIP[J]. Ceramics International, 2015, 41(8): 9692-9700. [14] CHENG L, LIU G, LIU W, et al. Densification and mechanical properties of TiC by SPS-effects of holding time, sintering temperature and pressure condition[J]. Journal of the European Ceramic Society, 2012, 32(12): 3399-3406. [15] CHEN M, FAN B, LEI H, et al. Rapid densification mechanism and properties of h-BN/ZrO2 composites with oxide additives by spark plasma sintering[J]. Journal of the European Ceramic Society, 2023, 43(13): 5493-5502. [16] HU Z Y, ZHANG Z H, CHENG X W, et al. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications[J]. Materials & Design, 2020, 191: 108662. [17] PAPITHA R, SURESH M B, CHAKRAVARTY D, et al. Eutectoid decomposition of aluminum titanate (Al2TiO5) ceramics under spark plasma (SPS) and conventional (CRH) thermal treatments[J]. Ceramics International, 2014, 40(1): 659-666. [18] 李海舰. 原位生成致密钛酸铝陶瓷的工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. LI H J. Study on the process of in-situ forming dense aluminum titanate ceramics[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese). [19] 刘 纯. 碳化钽陶瓷的制备及致密化机理研究[D]. 武汉: 武汉理工大学, 2022. LIU C. Preparation and densification mechanism of tantalum carbide ceramics [D]. Wuhan: Wuhan University of Technology, 2022 (in Chinese). [20] 郭子龙. 机械激活固相反应原位合成钛酸铝陶瓷的自增韧结构及相关性能的研究[D]. 泉州: 华侨大学, 2008. GUO Z L. Study on self-toughening structure and related properties of in-situ synthesis of aluminum titanate ceramics by mechanically activated solid-state reaction[D]. Quanzhou: Huaqiao University, 2008 (in Chinese). [21] 李明忠. 钛酸铝/氧化铝复相陶瓷及其梯度材料的制备与性能评价[D]. 武汉: 武汉理工大学, 2010. LI M Z. Preparation and performance evaluation of aluminum titanate/alumina multiphase ceramics and its gradient materials[D]. Wuhan: Wuhan University of Technology, 2010 (in Chinese). [22] CHEN J J, YIN Z B, HONG D B, et al. Densification behavior and sintering kinetics of Al2O3-based ceramic tool materials via spark plasma sintering[J]. Ceramics International, 2024, 50(20): 39129-39137. [23] ZHAO W, YANG X Y, ZHAN Q S, et al. Densification mechanism, microstructure, and thermionic emission property at the low temperature of spark plasma sintered (LaBa)B6-ZrB2 composite[J]. Ceramics International, 2024, 50(18): 32015-32025. [24] QIU X, GOU G Q, ZHANG K, et al. Investigation on TiO2 photocathodic protection based on lattice distortion and stress engineering[J]. Materials Today Communications, 2023, 35: 105782. [25] ZHANG G F, WU G C, ZENG Y J, et al. Discrete element simulation of the ultrasonic-assisted scratching process of Al2O3 ceramic under compressive pre-stress[J]. Ceramics International, 2020, 46(18): 29090-29100. [26] BOTERO C A, JIMÉNEZ-PIQUÉ E, BAUDíN C, et al. Nanoindentation of Al2O3/Al2TiO5 composites: small-scale mechanical properties of Al2TiO5 as reinforcement phase[J]. Journal of the European Ceramic Society, 2012, 32(14): 3723-3731. [27] MUNZ D, FETT T. Ceramics: mechanical properties, failure behaviour, materials selection[M]. Berlin: Springer Berlin Heidelberg, 1999. [28] ZHANG S H, HOU Q L, JIANG H Y. A modified kerner model to predict the thermal expansion coefficient of multi-phase reinforced composites Al6092/SiC/LAS[J]. Archives of Metallurgy and Materials, 2023, 68(4): 1327-1332. [29] KE B R, JI W, ZOU J, et al. Densification mechanism, microstructure and mechanical properties of ZrC ceramics prepared by high-pressure spark plasma sintering[J]. Journal of the European Ceramic Society, 2023, 43(8): 3053-3061. |