BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (6): 2172-2180.DOI: 10.16552/j.cnki.issn1001-1625.2024.1349
• Solid Waste and Eco-Materials • Previous Articles Next Articles
WU Zhihong1, PENG Jingzhi1, PAN Yuexin1, YU Gang2, REN Shufang2, XU Hongjin2
Received:2024-11-11
Revised:2024-12-23
Published:2025-06-27
CLC Number:
WU Zhihong, PENG Jingzhi, PAN Yuexin, YU Gang, REN Shufang, XU Hongjin. Research Progress of Copper Tailings in Cement Production and Concrete Application[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2172-2180.
| [1] 张 彪, 姜春志. 铜尾矿资源综合利用及研究进展[J]. 世界有色金属, 2019(18): 125-126. ZHANG B, JIANG C Z. Comprehensive utilization and research progress of copper tailings resources[J]. World Nonferrous Metals, 2019(18): 125-126 (in Chinese). [2] 郭万进, 吴明海, 王 阳, 等. 我国铜矿尾矿资源化利用技术现状及进展[J]. 矿产综合利用, 2023(5): 127-134. GUO W J, WU M H, WANG Y, et al. Present situation and progress of resource utilization technology of copper tailings in China[J]. Multipurpose Utilization of Mineral Resources, 2023(5): 127-134 (in Chinese). [3] VARGAS F, ALSINA M A, GAILLARD J F, et al. Copper entrapment and immobilization during cement hydration in concrete mixtures containing copper tailings[J]. Journal of Cleaner Production, 2021, 312: 127547. [4] XU R S, TONG H, KONG F H, et al. Potential of copper tailings as supplementary siliceous materials in the preparation of autoclaved aerated concrete[J]. Journal of Building Engineering, 2024, 98: 111250. [5] 肖莉娜. 机械-化学耦合活化对铜尾矿火山灰活性的影响[J]. 硅酸盐通报, 2020, 39(11): 3595-3600. XIAO L N. Effect of mechanical-chemical coupling activation on pozzolanic activity of copper tailings[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11): 3595-3600 (in Chinese). [6] 袁 鹏. 安徽某地铜尾矿资源的综合利用研究[J]. 矿业工程, 2023, 21(2): 61-65. YUAN P. Study on comprehensive utilization of copper tailings resources in a place in Anhui Province[J]. Mining Engineering, 2023, 21(2): 61-65 (in Chinese). [7] 史星丽, 伊元荣, 艾尼瓦尔·斯地克, 等. 钠盐球磨协同活化铜尾矿及胶凝水化性能研究[J]. 中国矿业, 2023, 32(3): 108-117. SHI X L, YI Y R, AINIVAR S, et al. Study on the synergistic activation and cementing and hydration properties of copper tailings by sodium salt ball milling[J]. China Mining Magazine, 2023, 32(3): 108-117 (in Chinese). [8] ZHANG L M, LIU S B, SONG D S. Effect of the content of micro-active copper tailing on the strength and pore structure of cementitious materials[J]. Materials, 2019, 12(11): 1861. [9] 朱街禄, 宋军伟, 王 露, 等. 铜尾矿在水泥基材料中应用的研究进展[J]. 硅酸盐通报, 2018, 37(11): 3492-3497. ZHU J L, SONG J W, WANG L, et al. Research progress on application of copper tailing in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3492-3497 (in Chinese). [10] LV C, WEN S M, BAI S J, et al. Recovery Cu from a copper oxide ore by flotation and leaching[J]. Applied Mechanics and Materials, 2014, 522/523/524: 1484-1487. [11] 周婷婷, 张长森, 魏 宁, 等. 铜尾渣替代粘土制备水泥熟料的试验研究[J]. 硅酸盐通报, 2014, 33(3): 691-696. ZHOU T T, ZHANG C S, WEI N, et al. Experimental research on cement clinker prepared by copper tailings instead of clay[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(3): 691-696 (in Chinese). [12] 张 鸽, 张 弛, 林星杰, 等. 双碳背景下铜尾矿综合利用方向探讨[J]. 矿冶, 2024, 33(4): 600-606. ZHANG G, ZHANG C, LIN X J, et al. Discussion on the comprehensive utilization of copper tailings under the background of dual carbon[J]. Mining and Metallurgy, 2024, 33(4): 600-606 (in Chinese). [13] 黄晓燕, 倪 文, 王中杰, 等. 铜尾矿制备无石灰加气混凝土的试验研究[J]. 材料科学与工艺, 2012, 20(1): 11-15. HUANG X Y, NI W, WANG Z J, et al. Experimental study on autoclaved aerated concrete made from copper tailings without using lime as calcareous materials[J]. Materials Science and Technology, 2012, 20(1): 11-15 (in Chinese). [14] 杨越晴, 王 琼, 孙 伟, 等. 铜尾矿资源化技术研究现状[C]//2020中国环境科学学会科学技术年会论文集(第三卷). 南京, 2020: 1086-1094. YANG Y Q, WANG Q, SUN W, et al. Research status of copper tailings resources technology[C]//Proceedings of the 2020 Annual Conference of Chinese Society for Environmental Sciences (Vol.3). Nanjing, 2020: 3867-3875 (in Chinese) [15] 莫晓兰, 林 海, 傅开彬, 等. 绢云母对黄铜矿微生物浸出的影响[J]. 中国有色金属学报, 2012, 22(5): 1475-1481. MO X L, LIN H, FU K B, et al. Effect of sericite on bioleaching of chalcopyrite[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(5): 1475-1481 (in Chinese). [16] 阙绍娟, 陆 智, 吴福初. 广西某选铜尾矿铁铜硫锡综合回收选矿试验[J]. 有色金属(选矿部分), 2015(6): 17-21+49. QUE S J, LU Z, WU F C. Research on comprehensive recovery of iron-copper-sulfur-tin from a copper tailings of Guangxi[J]. Nonferrous Metals (Mineral Processing Section), 2015(6): 17-21+49 (in Chinese). [17] 李天霞, 张晓峰, 张适合, 等. 河北某铜尾矿综合回收铜的选矿试验研究[J]. 有色金属(选矿部分), 2019(2): 17-22. LI T X, ZHANG X F, ZHANG S H, et al. Experimental study on mineral processing of comprehensive recovery of copper from a copper tailings in Hebei Province[J]. Nonferrous Metals (Mineral Processing Section), 2019(2): 17-22 (in Chinese). [18] 毛 羽, 傅开彬, 钟秋红, 等. 某铜矿尾矿渣微生物柱浸及其动力学[J]. 有色金属(冶炼部分), 2020(9): 80-87. MAO Y, FU K B, ZHONG Q H, et al. Column bioleaching of tailings from copper mine and its leaching kinetics[J]. Nonferrous Metals (Extractive Metallurgy), 2020(9): 80-87 (in Chinese). [19] 李 广, 温 建, 肖 琴, 等. 福建某选铜尾矿高效回收硫精矿试验研究[J]. 福建冶金, 2022, 51(2): 18-23. LI G, WEN J, XIAO Q, et al. Study on a new process for improve copper recovery from a low grade copper ore form Fujian Province[J]. Fujian Metallurgy, 2022, 51(2): 18-23 (in Chinese). [20] QIU G H, LUO Z Y, SHI Z L, et al. Utilization of coal gangue and copper tailings as clay for cement clinker calcinations[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2011, 26(6): 1205-1210. [21] 奚新国, 张长森, 周婷婷, 等. 铜尾渣对水泥生料易烧性及熟料性能的影响[J]. 建筑材料学报, 2014, 17(6): 1102-1107+1114. XI X G, ZHANG C S, ZHOU T T, et al. Effect of copper tailings on burn-ability of cement raw meal and performances of clinker[J]. Journal of Building Materials, 2014, 17(6): 1102-1107+1114 (in Chinese). [22] 郑娇玲, 季水根, 陈子昂, 等. 废弃铜尾矿水泥熟料的制备及性能表征[J]. 平顶山学院学报, 2022, 37(2): 36-39. ZHENG J L, JI S G, CHEN Z A, et al. Preparation and characterization of cement clinker from waste copper tailings[J]. Journal of Pingdingshan University, 2022, 37(2): 36-39 (in Chinese). [23] 吴 鑫, 徐 迅, 毛作宾, 等. 铜尾矿全替代硅质原料制备水泥熟料的研究[J]. 非金属矿, 2023, 46(6): 40-44. WU X, XU X, MAO Z B, et al. Research on the full replacement of siliceous raw materials by copper tailings to prepare cement clinker[J]. Non-Metallic Mines, 2023, 46(6): 40-44 (in Chinese). [24] OLUWASOLA E A, HAININ M R, AZIZ M M A. Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction[J]. Transportation Geotechnics, 2015, 2: 47-55. [25] LIU S H, PAN C, ZHANG H B, et al. Development of novel mineral admixtures for sulphoaluminate cement clinker: the effects of wet carbonation activated red mud[J]. Journal of Building Engineering, 2023, 67: 105920. [26] 鲁 亚, 徐 伟, 胡 泊, 等. 基于微纳米处理与级配调控的铜尾矿掺合料混凝土耐久性研究[J]. 新型建筑材料, 2023, 50(4): 43-49. LU Y, XU W, HU P, et al. Study on durability of concrete of copper tailings admixture based on micro-nano treatment and gradation regulation[J]. New Building Materials, 2023, 50(4): 43-49 (in Chinese). [27] CHENG Y, QI R F, HOU J H, et al. Feasibility study on utilization of copper tailings as raw meal and addition for low carbon Portland cement production[J]. Construction and Building Materials, 2023, 382: 131275. [28] LIU S H, WANG L, LI Q L, et al. Hydration properties of Portland cement-copper tailing powder composite binder[J]. Construction and Building Materials, 2020, 251: 118882. [29] 李巧玲. 铜尾矿粉在水泥基材料中的作用机理[D]. 武汉: 武汉大学, 2018. LI Q L. Mechanism effects of copper tailings in cement-based materials[D]. Wuhan: Wuhan University, 2018 (in Chinese). [30] 宋军伟, 朱街禄, 刘方华, 等. 铜尾矿粉对复合胶凝体系强度和微结构的影响[J]. 建筑材料学报, 2019, 22(6): 846-852. SONG J W, ZHU J L, LIU F H, et al. Influence of copper tailing powder on the compressive strength and microscopic structure of complex binder[J]. Journal of Building Materials, 2019, 22(6): 846-852 (in Chinese). [31] ESMAEILI J, ASLANI H, ONUAGULUCHI O. Reuse potentials of copper mine tailings in mortar and concrete composites[J]. Journal of Materials in Civil Engineering, 2020, 32(5): 04020084. [32] 施麟芸, 刘松柏, 张立明. 铜尾矿渣复合掺合料的活性影响规律及其机理分析[J]. 混凝土, 2019(5): 70-73. SHI L Y, LIU S B, ZHANG L M. Effects of compound mineral addition activation index on by copper tail slag powder and its mechanism[J]. Concrete, 2019(5): 70-73 (in Chinese). [33] ZHOU Y, DUAN X L, CHEN T, et al. Mechanical properties and toxicity risks of lead-zinc sulfide tailing-based construction materials[J]. Materials, 2021, 14(11): 2940. [34] KIRTHIKA S K, SINGH S K, CHOURASIA A. Alternative fine aggregates in production of sustainable concrete: a review[J]. Journal of Cleaner Production, 2020, 268: 122089. [35] ARUNACHALAM K P, AVUDAIAPPAN S, MAUREIRA N, et al. Innovative use of copper mine tailing as an additive in cement mortar[J]. Journal of Materials Research and Technology, 2023, 25: 2261-2274. [36] XIE R S, GE R, LI Z, et al. Synthesis and influencing factors of high-performance concrete based on copper tailings for efficient solidification of heavy metals[J]. Journal of Environmental Management, 2023, 325: 116469. [37] THOMAS B S, DAMARE A, GUPTA R C. Strength and durability characteristics of copper tailing concrete[J]. Construction and Building Materials, 2013, 48: 894-900. [38] GUPTA R C, MEHRA P, THOMAS B S. Utilization of copper tailing in developing sustainable and durable concrete[J]. Journal of Materials in Civil Engineering, 2017, 29(5): 04016274. [39] 邹先杰, 刘道斌, 卢自立, 等. 机制砂-铜尾矿复合砂商品混凝土性能研究[J]. 武汉理工大学学报, 2014, 36(12): 27-31. ZOU X J, LIU D B, LU Z L, et al. Research on properties of manufactured sand-copper tailing composite sand ready-mixed concrete[J]. Journal of Wuhan University of Technology, 2014, 36(12): 27-31 (in Chinese). [40] 高梦瑶. 湖北铜尾矿作为细骨料及矿物掺合料制备路面混凝土的性能研究[D]. 抚州: 东华理工大学, 2022. GAO M Y. Study on properties of pavement concrete prepared by copper tailings as fine aggregate and mineral admixture in Hubei[D]. Fuzhou: East China Institute of Technology, 2022 (in Chinese). [41] 张祎斐. 铜尾矿陶粒的制备及其透水混凝土基本性能的研究[D]. 抚州: 东华理工大学, 2023. ZHANG Y F. Preparation of copper tailings ceramsite and study on basic properties of pervious concrete[D]. Fuzhou: East China Institute of Technology, 2023 (in Chinese). [42] 方海星. 铜尾矿轻质陶粒及陶粒泡沫混凝土研究[D]. 南昌: 南昌大学, 2021. FANG H X. Study on copper tailings lightweight ceramsite and the ceramsite foam concrete[D]. Nanchang: Nanchang University, 2021 (in Chinese). [43] XU W, ZHANG Y Y, YAN J, et al. Microstructure and properties of high-strength lightweight ceramsites customised with ultra-fine copper tailings[J]. Construction and Building Materials, 2024, 429: 136433. [44] CHEN C L, LIU H, ZHANG Y, et al. Micro-assessment of heavy metal immobilization within alkali-activated copper tailings-slag geopolymer[J]. Cement and Concrete Composites, 2024, 149: 105510. [45] VARGAS F, LOPEZ M. Development of a new supplementary cementitious material from the activation of copper tailings: mechanical performance and analysis of factors[J]. Journal of Cleaner Production, 2018, 182: 427-436. [46] JIAN S W, GAO W B, LV Y, et al. Potential utilization of copper tailings in the preparation of low heat cement clinker[J]. Construction and Building Materials, 2020, 252: 119130. |
| [1] | LIANG Yun, YU Qiuchun, DENG Yongjie, DONG Sijia, LI Weihong, LI Dongwei. Bonding Strength and Durability of Spray Printing Ultra-Rapid Setting Magnesium Phosphate Cement Coating [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 1967-1978. |
| [2] | SUN Haojie, LI Beixing, JI Xiankun, CHENG Fuxing, ZHANG Dengke. Effect of Temperature Rise Inhibitor on Temperature Control and Deformation Properties of Concrete with Calcium and Magnesium Oxides Based Expansive Agent [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2079-2088. |
| [3] | YI Qian, GU Jun, CHEN Weijie, XIANG Hao, GUO Zhenghao, GAO Sheng, LUO Shuqiong. Effect of Coal Gangue Fine Aggregate Modification Treatment onMortar Performance [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2193-2200. |
| [4] | ZHANG Xinyu, CUI Suping, MENG Lingqin, WANG Yali. Multi-Gas Removal Performance of CuCe-MCM-41 Catalyst in Preheating Decomposition System [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2005-2015. |
| [5] | YU Hailong, BAI Wending, LIU Meifang, HU Liqun, BAO Yingbo. Effect of Basalt Fiber on Mechanical Properties of Cement Stabilized Macadam with Suspended Dense Structure [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2343-2352. |
| [6] | MA Lingyong, LIU Yandong, LIU Yang, JIANG Wei, LI Qing, DU Bin, FU Enmin, LI Dong. Effects of Water Temperature and Hydrogen Peroxide on Properties and Pore Structure of Foamed Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 1979-1987. |
| [7] | TANG Ruifeng, WANG Ziming, CUI Suping, ZHAO Sixue, RUI Yafeng. Effect of Ethylenediamine Tetramethylene Phosphonic Acid on EarlyHydration-Hardening of High Belite Calcium Sulfoaluminate Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 1988-1995. |
| [8] | FAN Jiahui, ZHANG Yike, YUAN Chengfang. Freeze-Thaw Damage Characteristic and Modeling of Yellow River Sand High-Ductility Engineered Cementitious Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2060-2069. |
| [9] | ZHANG Yafang, YE Guocheng, ZENG Ke, XU Jingbin, BAO Sihai. Interfacial Bonding Behavior of GS-UHPCC Based on Mesomechanics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2070-2078. |
| [10] | FENG Yanyu, WEN Yong, ZHANG Chao. Effect of Nano-SiO2 on Resistance of Concrete to Sulfate Attack [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2089-2100. |
| [11] | XU Cundong, YANG Baichang, WANG Hairuo, ZOU Xuan, WANG Zhihang, LI Bofei. Mechanical Properties of Basalt Fiber Concrete under Compound Salt Freezing Erosion [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2101-2110. |
| [12] | ZHAO Yuchen, XING Ying, LI Wei, GUO Qi. Friction Performance of Steel-Concrete Composite Interface ThroughBolted Joints under Fatigue Loading [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2111-2120. |
| [13] | REN Enzhong, ZHANG Xiang, DONG Longhui. Mechanical Properties of Cracked Concrete Specimens with Grouting Repair under Freeze-Thaw Cycles [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2135-2148. |
| [14] | JIANG Heng, CHAI Hucheng, LIU Erceng, ZHANG Haibo, SONG Changsheng, GONG Zhili. Effect of In-Situ Polymerization on Properties ofCement-Based Grouting Reinforcement Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2149-2158. |
| [15] | HAN Zhongyu, LIU Fang, MAO Wenshu. Research Progress on Durability of Rubber Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2159-2171. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||