[1] AKFAS F, ELGHALI A, ABOULAICH A, et al. Exploring the potential reuse of phosphogypsum: a waste or a resource?[J]. Science of the Total Environment, 2024, 908: 168196. [2] ALTUN A, SERT Y. Utilization of weathered phosphogypsum as set retarder in Portland cement[J]. Cement and Concrete Research, 2004, 34(4): 677-680. [3] 廖宜顺, 汪 凯, 李 豪. 大掺量磷石膏矿渣水泥的水化历程与长期强度研究[J]. 硅酸盐通报, 2023, 42(12): 4408-4415. LIAO Y S, WANG K, LI H. Study on hydration process and long-term strength of high-volume phosphogypsum slag cement[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4408-4415 (in Chinese). [4] PAPASTEFANOU C, STOULOS S, IOANNIDOU A, et al. The application of phosphogypsum in agriculture and the radiological impact[J]. Journal of Environmental Radioactivity, 2006, 89(2): 188-198. [5] 唐 佩, 文嘉祺, 陈 伟. 铝酸钠对磷石膏矿渣干硬水泥性能的影响机理[J]. 硅酸盐通报, 2024, 43(8): 2924-2932. TANG P, WEN J Q, CHEN W. Influence mechanism of sodium aluminate on properties of phosphogypsum slag dry-hard cement[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(8): 2924-2932 (in Chinese). [6] MESKINI S, SAMDI A, EJJAOUANI H, et al. Valorization of phosphogypsum as a road material: stabilizing effect of fly ash and lime additives on strength and durability[J]. Journal of Cleaner Production, 2021, 323: 129161. [7] BEKKERI G B, SHETTY K K, NAYAK G. Synthesis of artificial aggregates and their impact on performance of concrete: a review[J]. Journal of Material Cycles and Waste Management, 2023, 25(4): 1988-2011. [8] DING C, SUN T, SHUI Z H, et al. Physical properties, strength, and impurities stability of phosphogypsum-based cold-bonded aggregates[J]. Construction and Building Materials, 2022, 331: 127307. [9] 石 鑫, 徐玲玲, 冯 涛, 等. 水分散聚合物乳液改性水泥砂浆的研究进展[J]. 硅酸盐通报, 2021, 40(8): 2497-2507. SHI X, XU L L, FENG T, et al. Research progress of water dispersed polymer emulsion modified cement mortar[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8): 2497-2507 (in Chinese). [10] UL REHMAN M, RASHID K, UL HAQ E, et al. Physico-mechanical performance and durability of artificial lightweight aggregates synthesized by cementing and geopolymerization[J]. Construction and Building Materials, 2020, 232: 117290. [11] GRUSKOVNJAK A, LOTHENBACH B, WINNEFELD F, et al. Hydration mechanisms of super sulphated slag cement[J]. Cement and Concrete Research, 2008, 38(7): 983-992. [12] HUANG Y, LIN Z S. A binder of phosphogypsum-ground granulated blast furnace slag-ordinary Portland cement[J]. Journal of Wuhan University of Technology-Material Science Edition, 2011, 26(3): 548-551. [13] 刘爱平, 吴赤球, 水中和, 等. 高掺量磷石膏水硬性胶凝材料组成设计与性能调节[J]. 硅酸盐通报, 2024, 43(3): 1003-1011. LIU A P, WU C Q, SHUI Z H, et al. Composition design and property regulation of high content phosphogypsum hydraulic cementing material[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(3): 1003-1011 (in Chinese). [14] JUENGER M C G, WINNEFELD F, PROVIS J L, et al. Advances in alternative cementitious binders[J]. Cement and Concrete Research, 2011, 41(12): 1232-1243. [15] MANIKANDAN R, RAMAMURTHY K. Effect of curing method on characteristics of cold bonded fly ash aggregates[J]. Cement and Concrete Composites, 2008, 30(9): 848-853. |