[1] MANALO A, MARANAN G, BENMOKRANE B, et al. Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environments[J].Cement and Concrete Composites, 2020, 109: 103564. [2] HASANI M, MOGHADAS N F, SOBHANI J, et al. Mechanical and durability properties of fiber reinforced concrete overlay: experimental results and numerical simulation[J].Construction and Building Materials, 2021, 268: 121083. [3] 梁咏宁, 刘务东, 赵 凯, 等. 加速碳化条件下不同养护制度对碱矿渣混凝土钢筋锈蚀的影响[J].材料导报, 2024, 38(11): 162-169. LIANG Y N, LIU W D, ZHAO K, et al. Effect of different curing regimes on the corrosion of alkali-activated slag concrete reinforcement under carbonation environment[J].Materials Reports, 2024, 38(11): 162-169 (in Chinese). [4] 唐先习, 杜腾飞, 郭俊瑶, 等. 高浓度氯盐环境下钢筋混凝土裂缝扩展影响因素及规律研究[J].建筑科学, 2024, 40(7): 49-56. TANG X X, DU T F, GUO J Y, et al. Study on influencing factors and laws of crack propagation in reinforced concrete under high concentration chloride environment[J].Building Science, 2024, 40(7): 49-56 (in Chinese). [5] 刘国强, 张东方, 陈昊翔, 等. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究[J].中国腐蚀与防护学报, 2024, 44(1): 204-212. LIU G Q, ZHANG D F, CHEN H X, et al. Electrochemical corrosion behavior of 2304 duplex stainless steel in a simulated pore solution in reinforced concrete serving in marine environment[J].Journal of Chinese Society for Corrosion and Protection, 2024, 44(1): 204-212 (in Chinese). [6] 汪 伟, 赖增成, 谭 鹏, 等. 机制砂与特细砂抗氯盐侵蚀混凝土的制备及性能研究[J].硅酸盐通报, 2024, 43(6): 2121-2129. WANG W, LAI Z C, TAN P, et al. Preparation and properties of chloride resistant concrete with manufactured sand and extra fine sand[J].Bulletin of the Chinese Ceramic Society, 2024, 43(6): 2121-2129 (in Chinese). [7] 周双喜, 韩 震, 魏 星, 等. 骨料含量和界面区体积对混凝土氯离子扩散性能的影响[J].建筑材料学报, 2018, 21(3): 351-357. ZHOU S X, HAN Z, WEI X, et al. Influence of aggregate contents and volume of interfacial transition zone on chloride ion diffusion properties of concrete[J].Journal of Building Materials, 2018, 21(3): 351-357 (in Chinese). [8] 胡守旺, 龙永康, 符峰源, 等. 滨海饱和混凝土中氯离子传输行为的细观模拟研究[J].交通科学与工程, 2023, 39(5): 17-23. HU S W, LONG Y K, FU F Y, et al. Mesoscopic simulation study on chloride lon transport behavior in marine saturated concrete[J].Journal of Transport Science and Engineering, 2023, 39(5): 17-23 (in Chinese). [9] 延永东, 刘甲琪, 徐鹏飞, 等. 考虑骨料表面强化的再生混凝土内氯离子传输细观数值模拟[J].硅酸盐通报, 2022, 41(2): 441-449. YAN Y D, LIU J Q, XU P F, et al. Mesoscopic numerical simulation of chloride ion transportation in recycled aggregate concrete with surface strengthened aggregate[J].Bulletin of the Chinese Ceramic Society, 2022, 41(2): 441-449 (in Chinese). [10] JIN L B, YU H L, WANG Z Q, et al. Effect of crack and damaged zone on chloride penetration in recycled aggregate concrete: a seven-phase mesoscale numerical method[J].Construction and Building Materials, 2021, 291: 123383. [11] YU L, LIU C H, MEI H, et al. Effects of aggregate and interface characteristics on chloride diffusion in concrete based on 3D random aggregate model[J].Construction and Building Materials, 2022, 314: 125690. [12] 杜修力, 金 浏, 张仁波. 压缩荷载作用下混凝土中氯离子扩散行为细观模拟[J].建筑材料学报, 2016, 19(1): 65-71. DU X L, JIN L, ZHANG R B. Meso-scale simulation of chloride diffusivity in concrete subjected to compressive stress[J].Journal of Building Materials, 2016, 19(1): 65-71 (in Chinese). [13] 张亚洲, 钟 红, 李春雷, 等. 全级配混凝土静动态轴拉断裂试验[J].硅酸盐学报, 2024, 52(2): 569-578. ZHANG Y Z, ZHONG H, LI C L, et al. Static and dynamic axial tensile fracture of fully-graded concrete[J].Journal of the Chinese Ceramic Society, 2024, 52(2): 569-578 (in Chinese). [14] 武 亮, 王 菁, 糜凯华. 全级配混凝土二维细观模型的自动生成[J].建筑材料学报, 2015, 18(4): 626-632. WU L, WANG J, MEI K H. Automatic generation of 2D mesoscale models for fully-graded concrete[J].Journal of Building Materials, 2015, 18(4): 626-632 (in Chinese). [15] 杨医博, 莫海鸿, 周贤文, 等. 大粒径骨料混凝土抗氯盐性能评价试验研究[J].人民长江, 2010, 41(21): 24-27. YANG Y B, MO H H, ZHOU X W, et al. Study on the chloride resistant performance of concrete with the large size aggregate[J].Yangtze River, 2010, 41(21): 24-27 (in Chinese). [16] 蔡浚璟. 水工大骨料及湿筛混凝土力学性能细观数值模拟[D].大连: 大连海洋大学, 2023. CAI J J. Meso-numerical simulation of mechanical properties of hydraulic large aggregate and wet screen concrete[D].Dalian: Dalian Ocean University, 2023 (in Chinese). [17] 李嘉豪. 全级配混凝土组成结构设计与抗侵蚀性能研究[D].广州: 华南理工大学, 2023. LI J H. Study on structural design and erosion resistance of fully graded concrete[D].Guangzhou: South China University of Technology, 2023 (in Chinese). [18] BASHEER L, KROPP J, CLELAND D J. Assessment of the durability of concrete from its permeation properties: a review[J].Construction and Building Materials, 2001, 15(2/3): 93-103. [19] 蒋琼明, 吉学宽, 农忠霖. 时变扩散系数对混凝土结构服役寿命的影响[J].科学技术与工程, 2020, 20(33): 13833-13838. JIANG Q M, JI X K, NONG Z L. Reliability of concrete structures considering the time-varying diffusion coefficient[J].Science Technology and Engineering, 2020, 20(33): 13833-13838 (in Chinese). [20] 乔宏霞, 乔国斌, 路承功. 混凝土中氯离子传输模拟及速率分析[J].华中科技大学学报(自然科学版), 2022, 50(2): 19-25. QIAO H X, QIAO G B, LU C G. Simulation and velocity analysis of chloride ion transport in concrete[J].Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(2): 19-25 (in Chinese). [21] 胡伟超, 陈 正, 余 波, 等. 再生混凝土氯离子渗透性能及龄期衰减系数分析[J].混凝土, 2020(8): 10-14. HU W C, CHEN Z, YU B, et al. Analysis of aged reduction coefficients and chloride ions permeability in recycled aggregate concrete[J].Concrete, 2020(8): 10-14 (in Chinese). [22] 揣亚光. 海洋环境下港口工程混凝土界面过渡区氯离子扩散系数模型[J].水运工程, 2018(10): 82-90. CHUAI Y G. Chloride diffusion coefficient model of interfacial transition zone of concrete with port engineering in marine environment[J].Port & Waterway Engineering, 2018(10): 82-90 (in Chinese). [23] 蔡栋兴, 毕文彦, 管学茂. 粗骨料对混凝土氯离子扩散影响的模拟与试验[J].建筑材料学报, 2023, 26(4): 383-388. CAI D X, BI W Y, GUAN X M. Simulation and experiment of the effect of coarse aggregate on chloride diffusion in concrete[J].Journal of Building Materials, 2023, 26(4): 383-388 (in Chinese). [24] 张 宏, 朱海威, 杨海成, 等. 冰冻海水环境下混凝土表面涂层长期暴露试验研究[J].硅酸盐通报, 2022, 41(4): 1301-1307. ZHANG H, ZHU H W, YANG H C, et al. Long-term exposure test of concrete surface coating in frozen seawater environment[J].Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1301-1307 (in Chinese). [25] 杨海成, 胡正涛, 于 方, 等. 海水环境粉煤灰混凝土结构耐久性现场检测与评估分析[J].海洋工程, 2019, 37(2): 104-111. YANG H C, HU Z T, YU F, et al. Field test and evaluation analysis on durability of fly ash concrete structures in seawater environment[J].The Ocean Engineering, 2019, 37(2): 104-111 (in Chinese). [26] 王元战, 吕彦伟, 龙俞辰, 等. 粗骨料对混凝土界面过渡区氯离子扩散性能影响[J].海洋工程, 2018, 36(2): 73-82. WANG Y Z, LYU Y W, LONG Y C, et al. Effect of coarse aggregate on chloride diffusion properties in the interfacial transition zone of concrete[J].The Ocean Engineering, 2018, 36(2): 73-82 (in Chinese). [27] 张 斌, 陈红帅, 张 权, 等. 细观层次开裂混凝土中氯离子扩散数值模拟[J].公路交通科技(应用技术版), 2020, 16(6): 124-129. ZHANG B, CHEN H S, ZHANG Q, et al. Numerical simulation of chloride ion diffusion in meso-level cracked concrete[J].Journal of Highway and Transportation Research and Development (Applied Technology), 2020, 16(6): 124-129 (in Chinese). [28] 张伟平, 王 浩, 顾祥林. 粗骨料随机分布对混凝土导热性能的影响[J].建筑材料学报, 2017, 20(2): 168-173+197. ZHANG W P, WANG H, GU X L. Effects of randomly distributed aggregates on thermal properties of concrete[J].Journal of Building Materials, 2017, 20(2): 168-173+197 (in Chinese). [29] 陆春华.钢筋混凝土受弯构件开裂性能及耐久性能研究[D].杭州: 浙江大学, 2011. LU C H. Flexural and durability performance of rc members with cracks[D].Hangzhou: Zhejiang University, 2011 (in Chinese). [30] 郭瑞琦, 郭增伟, 施跃毅. 钢筋初始锈蚀时刻的氯离子临界浓度研究综述[J].硅酸盐通报, 2020, 39(9): 2706-2713. GUO R Q, GUO Z W, SHI Y Y. Review on research of critical chloride concentration in initial corrosion time of steel bar[J].Bulletin of the Chinese Ceramic Society, 2020, 39(9): 2706-2713 (in Chinese). |