[1] ZHOU Y C, ZHAN Y J, ZHU M T, et al. A review of the effects of raw material compositions and steam curing regimes on the performance and microstructure of precast concrete[J].Materials, 2022, 15(8): 2859. [2] NAAS A, TAHA-HOCINE D, SALIM G, et al. Combined effect of powdered dune sand and steam-curing using solar energy on concrete characteristics[J].Construction and Building Materials, 2022, 322: 126474. [3] 郑琨鹏, 葛好升, 李正川, 等. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J].材料导报, 2024, 38(7): 83-88. ZHENG K P, GE H S, LI Z C, et al. Influence and mechanism of river sand and quartz sand on properties of steam cured ultra-high performance concrete[J].Materials Reports, 2024, 38(7): 83-88 (in Chinese). [4] 郭玉柱, 陈徐东, 宁英杰, 等. 基于X-CT的蒸养大掺量矿物掺合料砂浆孔结构[J].建筑材料学报, 2022, 25(9): 885-892. GUO Y Z, CHEN X D, NING Y J, et al. Pore structure of steam cured high volume mineral admixture mortar based on X-CT technology[J].Journal of Building Materials, 2022, 25(9): 885-892 (in Chinese). [5] 李 广, 李北星, 黄 安, 等. 养护温度和矿物掺合料对蒸养混凝土脆性的影响[J].硅酸盐通报, 2023, 42(2): 487-495. LI G, LI B X, HUANG A, et al. Effects of curing temperature and mineral admixtures on brittleness of steam cured concrete[J].Bulletin of the Chinese Ceramic Society, 2023, 42(2): 487-495 (in Chinese). [6] YAO B, REN G S, HUANG J B, et al. Influence of self-ignition coal gangue on properties of foam concrete with steam curing[J].Case Studies in Construction Materials, 2022, 17: e01316. [7] WANG P G, FU H, GUO T F, et al. Volume deformation of steam-cured concrete with fly ash during and after steam curing[J].Construction and Building Materials, 2021, 306: 124854. [8] LOU B X, MA F H. Crack extension resistance of steam-cured concrete under different curing temperature conditions[J].Theoretical and Applied Fracture Mechanics, 2022, 119: 103331. [9] 佘 亮, 傅平丰, 邓 威, 等. 联合活化多元辅助胶凝材料对蒸养混凝土性能的影响[J].硅酸盐通报, 2022, 41(9): 3059-3067. SHE L, FU P F, DENG W, et al. Effect of combined activation multiple supplementary cementitious material on performance of steamed concrete[J].Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3059-3067 (in Chinese). [10] LIU B J, JIANG J Y, SHEN S, et al. Effects of curing methods of concrete after steam curing on mechanical strength and permeability[J].Construction and Building Materials, 2020, 256: 119441. [11] CABRERA-LUNA K, MALDONADO-BANDALA E E, NIEVES-MENDOZA D, et al. Supersulfated cements based on pumice with quicklime, anhydrite and hemihydrate: characterization and environmental impact[J].Cement and Concrete Composites, 2021, 124: 104236. [12] HANSEN S, SADEGHIAN P. Recycled gypsum powder from waste drywalls combined with fly ash for partial cement replacement in concrete[J].Journal of Cleaner Production, 2020, 274: 122785. [13] ZHANG G, LI G X. Effects of mineral admixtures and additional gypsum on the expansion performance of sulphoaluminate expansive agent at simulation of mass concrete environment[J].Construction and Building Materials, 2016, 113: 970-978. [14] WANG Q, SUN S K, YAO G, et al. Preparation and characterization of an alkali-activated cementitious material with blast-furnace slag, soda sludge, and industrial gypsum[J].Construction and Building Materials, 2022, 340: 127735. [15] ZENG L, ZHU J Y, ZHAO Y, et al. Pore structure characteristics and permeability analysis of natural anhydrite with various water/anhydrite ratios based on mercury intrusion porosimetry[J].Construction and Building Materials, 2023, 398: 132422. [16] KALKAN Ş O, GÜNDÜZ L. The influence of anhydrite III as cement replacement material in production of lightweight masonry blocks for unreinforced non-load bearing walls[J].Journal of Sustainable Construction Materials and Technologies, 2022, 7(4): 322-338. [17] HOU C, JIN X G, HE J, et al. Experimental studies on the pore structure and mechanical properties of anhydrite rock under freeze-thaw cycles[J].Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(3): 781-797. [18] ZHANG Z W, QIAN J S. Effect of protogenetic anhydrite on the hydration of cement under different curing temperature[J].Construction and Building Materials, 2017, 142: 417-422. [19] ZAHABIZADEH B, EDALAT-BEHBAHANI A, GRANJA J, et al. A new test setup for measuring early age coefficient of thermal expansion of concrete[J].Cement and Concrete Composites, 2019, 98: 14-28. [20] YANG Z Z, YE H S, YUAN Q, et al. Factors influencing the hydration, dimensional stability, and strength development of the OPC-CSA-anhydrite ternary system[J].Materials, 2021, 14(22): 7001. [21] JEN G, SKALAMPRINOS S, WHITTAKER M, et al. The impact of intrinsic anhydrite in an experimental calcium sulfoaluminate cement from a novel, carbon-minimized production process[J].Materials and Structures, 2017, 50(2): 144. [22] ESCALANTE-GARCIA J I, MARTíNEZ-AGUILAR O A, GOMEZ-ZAMORANO L Y. Calcium sulphate anhydrite based composite binders: effect of Portland cement and four pozzolans on the hydration and strength[J].Cement and Concrete Composites, 2017, 82: 227-233. [23] 周兴宇, 杨鼎宜, 朱从香, 等. 基于孔结构分析的多尺度聚丙烯纤维混凝土耐久性[J].材料科学与工程学报, 2022, 40(1): 110-115. ZHOU X Y, YANG D Y, ZHU C X, et al. Durability of multi-scale polypropylene fiber concrete based on pore structure analysis[J].Journal of Materials Science and Engineering, 2022, 40(1): 110-115 (in Chinese). [24] 康小朋, 卢都友, 许仲梓. 高性能混凝土构件中碱硅酸反应与延迟性钙矾石形成共存破坏[J].硅酸盐学报, 2016, 44(8): 1091-1097. KANG X P, LU D Y, XU Z Z. Coexistence of alkali silica reaction and delayed ettringite formation in a cracked high performance concrete element[J].Journal of the Chinese Ceramic Society, 2016, 44(8): 1091-1097 (in Chinese). [25] PAUL A, RASHIDI M, KIM J Y, et al. The impact of sulfate- and sulfide-bearing sand on delayed ettringite formation[J].Cement and Concrete Composites, 2022, 125: 104323. [26] YANG K, SUN Z X, ZHOU J, et al. Hydration mechanism of anhydrite and calcium sulfoaluminate co-activated slag cement: insights into the role of composition[J].Journal of Sustainable Cement-Based Materials, 2024, 13(4): 522-535. [27] GOLEWSKI G L. The phenomenon of cracking in cement concretes and reinforced concrete structures: the mechanism of cracks formation, causes of their initiation, types and places of occurrence, and methods of detection: a review[J].Buildings, 2023, 13(3): 765. [28] WANG J R, ZHANG H B, GUO Y N, et al. Effect of different lime-anhydrite ratios on the hydration process of sulfoaluminate cement[J].Journal of Materials in Civil Engineering, 2022, 34(10): 04022242. [29] WU Z M, KHAYAT K H, SHI C J, et al. Mechanisms underlying the strength enhancement of UHPC modified with nano-SiO2 and nano-CaCO3[J].Cement and Concrete Composites, 2021, 119: 103992. [30] CUESTA A, SANTACRUZ I, DE LA TORRE A G, et al. Local structure and Ca/Si ratio in C-S-H gels from hydration of blends of tricalcium silicate and silica fume[J].Cement and Concrete Research, 2021, 143: 106405. [31] ZHANG J Z, ZHOU X Y, ZHANG Y, et al. Stable process of concrete chloride diffusivity and corresponding influencing factors analysis[J].Construction and Building Materials, 2020, 261: 119994. [32] 董昊良, 李化建, 杨志强, 等.混凝土冻融破坏机理及寿命预测方法[J].材料导报, 2024, 38(2): 143-153. DONG H L, LI H J, YANG Z Q, et al. Concrete freeze-thaw damage mechanism and life prediction methods[J].Materials Reports, 2024, 38(2): 143-153 (in Chinese). [33] 陈正伟, 许桂霞. 冻融循环和盐卤侵蚀作用下复掺纳米混凝土的损伤模型[J].材料导报, 2023, 37(增刊2): 262-267. CHEN Z W, XU G X. Damage modeling of compounded nanocomposite concrete under freeze-thaw cycle and salt brine erosion[J].Materials Guide, 2023, 37(supplement 2): 262-267 (in Chinese). [34] LIU C, WANG F Z, ZHANG M Z. Modelling of 3D microstructure and effective diffusivity of fly ash blended cement paste[J].Cement and Concrete Composites, 2020, 110: 103586. |