[1] 李博琦, 谢 贤, 吕晋芳, 等. 粉煤灰资源化综合利用研究进展及展望[J]. 矿产保护与利用, 2020, 40(5): 153-160. LI B Q, XIE X, LYU J F, et al. Progress and prospect of research on comprehensive utilization of fly ash[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 153-160 (in Chinese). [2] 王 浩, 王晓佳, 桂 峰, 等. 高炉矿渣资源化利用现状及展望[J]. 化工矿物与加工, 2021, 50(11): 48-53. WANG H, WANG X J, GUI F, et al. The status and prospect of blast furnace slag resource utilization[J]. Industrial Minerals & Processing, 2021, 50(11): 48-53 (in Chinese). [3] 廖 桥, 彭 博, 李碧雄. 炉渣建材资源化利用现状[J]. 重庆建筑, 2018, 17(3): 53-57. LIAO Q, PENG B, LI B X. A review of resource utilization of slag building material[J]. Chongqing Architecture, 2018, 17(3): 53-57 (in Chinese). [4] AMULYA G, ALI BAIG MOGHAL A, ALMAJED A. A state-of-the-art review on suitability of granite dust as a sustainable additive for geotechnical applications[J]. Crystals, 2021, 11(12): 1526. [5] SAKA M B, HASHIM M H B M. Critical assessment of the effectiveness of different dust control measures in a granite quarry[J]. Journal of Public Health Policy, 2024, 45(2): 212-233. [6] 黄 涛, 张 明, 吴保才, 等. 燃煤渣和花岗岩石粉协同制备地聚合物研究[J]. 非金属矿, 2022, 45(6): 86-89. HUANG T, ZHANG M, WU B C, et al. Study on the co-preparation of geopolymer from burnt coal cinder and granite powder[J]. Non-Metallic Mines, 2022, 45(6): 86-89 (in Chinese). [7] 刘 森, 齐莉娜, 王泽祥, 等. 改性高钙粉煤灰水泥的各项性能研究[J]. 硅酸盐通报, 2018, 37(4): 1139-1145. LIU S, QI L N, WANG Z X, et al. Properties of modified high calcium fly ash cement[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(4): 1139-1145 (in Chinese). [8] HUANG M Y, BAO S X, ZHANG Y M, et al. The combined effects of calcium oxide and phosphate on burnt coal cinder-based cementitious materials[J]. Construction and Building Materials, 2023, 362: 129720. [9] ŞAHIN M, MAHYAR M, ERDOĞAN S T. Mutual activation of blast furnace slag and a high-calcium fly ash rich in free lime and sulfates[J]. Construction and Building Materials, 2016, 126: 466-475. [10] JI Z H, PEI Y S. Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: a review[J]. Journal of Environmental Management, 2019, 231: 256-267. [11] LIU X M, LIU E P. The synergistic mechanism and stability evaluation of phosphogypsum and recycled fine powder-based multi-source solid waste geopolymer[J]. Polymers, 2023, 15(12): 2696. [12] LI L, WEI Y J, LI Z L, et al. Rheological and viscoelastic characterizations of fly ash/slag/silica fume-based geopolymer[J]. Journal of Cleaner Production, 2022, 354: 131629. [13] TURKANE S D, CHOUKSEY S K. Application of response surface method for optimization of stabilizer dosages in soil stabilization[J]. Innovative Infrastructure Solutions, 2021, 7(1): 106. [14] LUO X, XU J Y, LI W M. Response surface design of solid waste based geopolymer[J]. RSC Advances, 2015, 5(2): 1598-1604. [15] SILVA L C, DOS REIS FERREIRA R A, DE CASTRO MOTTA L A, et al. Optimization of metakaolin-based geopolymer composite using sisal fibers, response surface methodology, and canonical analysis[J]. International Journal of Advanced Engineering Research and Science, 2019, 6(4): 32-44. [16] PEREZ J V D, NADRES E T, NGUYEN H N, et al. Response surface methodology as a powerful tool to optimize the synthesis of polymer-based graphene oxide nanocomposites for simultaneous removal of cationic and anionic heavy metal contaminants[J]. RSC Advances, 2017, 7(30): 18480-18490. [17] MOHAMMED B S, HARUNA S, MUBARAK BN ABDUL WAHAB M, et al. Optimization and characterization of cast in situ alkali-activated pastes by response surface methodology[J]. Construction and Building Materials, 2019, 225: 776-787. [18] DE OLIVEIRA L G, DE PAIVA A P, BALESTRASSI P P, et al. Response surface methodology for advanced manufacturing technology optimization: theoretical fundamentals, practical guidelines, and survey literature review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5): 1785-1837. [19] ZHENG Z, MA X, ZHANG Z H, et al. In-situ transition of amorphous gels to Na-P1 zeolite in geopolymer: mechanical and adsorption properties[J]. Construction and Building Materials, 2019, 202: 851-860. [20] 李 胜, 张红日, 王桂尧, 等. 基于响应面法的碱激发地聚物固化淤泥质土试验研究[J]. 硅酸盐通报, 2023, 42(12): 4438-4448. LI S, ZHANG H R, WANG G Y, et al. Experimental study of alkali-activated geopolymer cured silty soil based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4438-4448 (in Chinese). [21] 陈 瑜, 丁婧雯, 吴思华. 基于响应面法的地聚合物预混料制备工艺优化[J]. 科学技术与工程, 2022, 22(17): 7119-7126. CHEN Y, DING J W, WU S H. Optimization of preparation process of geopolymer premix based on response surface method[J]. Science Technology and Engineering, 2022, 22(17): 7119-7126 (in Chinese). [22] 郭晓潞, 施惠生, 夏 明. 不同钙源对地聚合物反应机制的影响研究[J]. 材料研究学报, 2016, 30(5): 348-354. GUO X L, SHI H S, XIA M. Effect of different calcium resouces on reaction mechanism of geopolymer[J]. Chinese Journal of Materials Research, 2016, 30(5): 348-354 (in Chinese). [23] 林 弟, 刘大庆, 刘 方, 等. 花岗岩石粉对水泥浆体流变特性的影响研究[J]. 建材世界, 2021, 42(5): 6-11. LIN D, LIU D Q, LIU F, et al. Study on the influence of granite powder on rheological properties of cement paste[J]. The World of Building Materials, 2021, 42(5): 6-11 (in Chinese). [24] 王 威, 刘润清, 商晓阳. 超高性能混凝土的石英砂级配效应研究[J]. 混凝土, 2024(1): 128-133. WANG W, LIU R Q, SHANG X Y. Quartz sand gradation effect of ultra-high performance concrete[J]. Concrete, 2024(1): 128-133 (in Chinese). [25] MA Z M, DAN H C, TAN J W, et al. Optimization design of MK-GGBS based geopolymer repairing mortar based on response surface methodology[J]. Materials, 2023, 16(5): 1889. [26] 翁履谦, SAGOE-CRENTSIL KWESI, 宋申华, 等. 地质聚合物合成中铝酸盐组分的作用机制[J]. 硅酸盐学报, 2005, 33(3): 276-280. WENG L, KWESI S, SONG S H, et al. Hydrolysis kinetics of aluminates in geopolymers synthesis[J]. Journal of the Chinese Ceramic Society, 2005, 33(3): 276-280 (in Chinese). [27] GUO X L, SHI H S, LIN M S, et al. Effects of calcium contents in class C fly ash geopolymer[J]. Advanced Materials Research, 2013, 687: 508-513. [28] 胡芳芳, 张一敏, 陈铁军, 等. 石煤提钒尾渣制备地聚合物的试验研究[J]. 硅酸盐通报, 2013, 32(12): 2449-2454. HU F F, ZHANG Y M, CHEN T J, et al. Experimental study on alkali-activated stone coal aciding vanadium tailings based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(12): 2449-2454 (in Chinese). [29] LEE W K W, VAN DEVENTER J S J. The effects of inorganic salt contamination on the strength and durability of geopolymers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 211(2/3): 115-126. [30] NATH S K. Geopolymerization behavior of ferrochrome slag and fly ash blends[J]. Construction and Building Materials, 2018, 181: 487-494. [31] NATH S K, KUMAR S. Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer[J]. Construction and Building Materials, 2020, 233: 117294. [32] 郑戈弋, 周海林, 黄青叶, 等. 燃煤渣花岗岩粉基地质聚合物的制备[J]. 有色金属(冶炼部分), 2022(9): 133-139. ZHENG G Y, ZHOU H L, HUANG Q Y, et al. Preparation and performance characterization of granite powder-burnt coal cinder-based geoploymer[J]. Nonferrous Metals (Extractive Metallurgy), 2022(9): 133-139 (in Chinese). [33] 范利丹, 杨 杰, 余永强, 等. 基于响应面法的地聚合物注浆材料配合比优化及其微观结构分析[J]. 工业建筑, 2023, 53(6): 194-201. FAN L D, YANG J, YU Y Q, et al. Mix proportion optimization and microstructure analysis for geopolymer grouting material based on response surface methodology[J]. Industrial Construction, 2023, 53(6): 194-201 (in Chinese). |