[1] 刘珂辰. 中西部机场西藏航线市场竞争性分析[J]. 空运商务, 2022(1): 23-27. LIU K C. Analysis on the market competitiveness of Tibet route in Midwest Airport[J]. Air Transport & Business, 2022(1): 23-27 (in Chinese). [2] 彭 科, 何 沙, 朱 林. 西藏自治区民航十四五时期的发展路径探究[J]. 郑州航空工业管理学院学报, 2022, 40(3): 27-35. PENG K, HE S, ZHU L. Research on the development path of civil aviation in Tibet Autonomous Region during the fourteenth five-year plan period[J]. Journal of Zhengzhou University of Aeronautics, 2022, 40(3): 27-35 (in Chinese). [3] 裴 照, 谷雪娇, 庄 媛. 我国高原机场发展相关问题初探[J]. 民航学报, 2021, 5(5): 19-23. PEI Z, GU X J, ZHUANG Y. Research on the development of high plateau airports in China[J]. Journal of Civil Aviation, 2021, 5(5): 19-23 (in Chinese). [4] 李雪峰. 青藏高原地区混凝土抗冻设计及预防措施研究[D]. 南京: 东南大学, 2015. LI X F. Anti-frost design method and preventive measures for concrete structure in the Qinghai-Tibet Plateau[D].Nanjing: Southeast University, 2015 (in Chinese). [5] 敦 晓, 岑国平, 黄灿华, 等. 机场道面混凝土冻融破坏评价指标[J]. 交通运输工程学报, 2010, 10(1): 13-18. DUN X, CEN G P, HUANG C H, et al. Evaluation indices of freezing-thawing destruction for airfield runway concrete[J]. Journal of Traffic and Transportation Engineering, 2010, 10(1): 13-18 (in Chinese). [6] BORG R, BALDACCHINO O, FERRARA L. Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete[J]. Construction and Building Materials, 2016, 108: 29-47. [7] AKKAYA Y, OUYANG C S, SHAH S P. Effect of supplementary cementitious materials on shrinkage and crack development in concrete[J]. Cement and Concrete Composites, 2007, 29(2): 117-123. [8] 龚 升, 张武满, 张劲松. 橡胶颗粒-钢纤维混掺对碾压混凝土抗冻性及抗冲击性能的影响[J]. 复合材料学报, 2018, 35(8): 2199-2207. GONG S, ZHANG W M, ZHANG J S. Frost resistance and impact properties of roller compacted concrete mixed with rubber particles and steel fibers[J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2199-2207 (in Chinese). [9] SUKONTASUKKUL P, TIAMLOM K. Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size[J]. Construction and Building Materials, 2012, 29: 520-526. [10] HE L, CAI H D, HUANG Y, et al. Research on the properties of rubber concrete containing surface-modified rubber powders[J]. Journal of Building Engineering, 2021, 35: 101991. [11] 李 黎, 委玉杰, 李宗利, 等. 基于纤维增强指数的碱激发砂浆物理力学性能[J]. 硅酸盐学报, 2022, 50(8): 2212-2220. LI L, WEI Y J, LI Z L, et al. Properties of alkali activated mortar fresh and hardened properties based on fiber reinforced index[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2212-2220 (in Chinese). [12] 陈疏桐, 陈建东, 薛 旭. 玄武岩纤维橡胶混凝土力学及冻融性能试验研究[J]. 混凝土与水泥制品, 2020(4): 54-58. CHEN S T, CHEN J D, XUE X. Experimental research on mechanics and freeze-thaw properties of basalt fiber rubber concrete[J]. China Concrete and Cement Products, 2020(4): 54-58 (in Chinese). [13] 李 悦, 吴玉生, 王 敏, 等. 橡胶集料混凝土物理力学性能研究[J]. 武汉理工大学学报, 2008, 30(1): 55-57. LI Y, WU Y S, WANG M, et al. Physical and mechanical properties of rubber concrete[J]. Journal of Wuhan University of Technology, 2008, 30(1): 55-57 (in Chinese). [14] 尹玉龙. 玄武岩纤维混凝土的力学性能和耐久性能研究[D]. 重庆: 重庆交通大学, 2015. YIN Y L. Experimental study on mechanical properties and durability of basalt fiber reinforced concrete[D].Chongqing: Chongqing Jiaotong University, 2015 (in Chinese). [15] 刘雨姗, 庞建勇, 王婷雅. 玄武岩纤维粉煤灰橡胶混凝土力学性能试验研究[J]. 科学技术与工程, 2019, 19(14): 315-319. LIU Y S, PANG J Y, WANG T Y. Experimental research on mechanical properties of basalt fiber reinforced rubber concrete with fly ash[J]. Science Technology and Engineering, 2019, 19(14): 315-319 (in Chinese). [16] 朱鹏宇, 万后林, 朱 叶, 等. 基于正交试验法的混杂纤维橡胶混凝土力学性能试验研究[J]. 复合材料科学与工程, 2021(12): 73-77. ZHU P Y, WAN H L, ZHU Y, et al. Experimental study on mechanical properties of hybrid fiber rubber concrete based on orthogonal experiment[J]. Composites Science and Engineering, 2021(12): 73-77 (in Chinese). [17] 张少敏, 白 英, 白 岩. 掺玄武岩纤维橡胶轻骨料混凝土力学性能试验与微观分析[J]. 混凝土世界, 2020(3): 66-69. ZHANG S M, BAI Y, BAI Y. Study on mechanical properties of basalt fiber rubber lightweight aggregate concrete and microscopic analysis[J]. China Concrete, 2020(3): 66-69 (in Chinese). [18] 李发扬, 邹 林, 郝星瑶, 等. 基于正交试验法的橡胶-玄武岩纤维改性混凝土性能研究[J]. 科学技术创新, 2021(15): 138-141. LI F Y, ZOU L, HAO X Y, et al. Study on properties of rubber-basalt fiber modified concrete based on orthogonal test method[J]. Scientific and Technological Innovation, 2021(15): 138-141 (in Chinese). [19] 权 磊, 田 波, 李思李, 等. 机场道面高频振捣密实混凝土弯曲疲劳性能演化特征[J]. 交通运输工程学报, 2020, 20(2): 34-45. QUAN L, TIAN B, LI S L, et al. Evolution characteristics of flexural fatigue performance of dense concrete consolidated with high frequency vibration applied in airport pavement[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 34-45 (in Chinese). [20] 甘 磊, 吴 健, 沈振中, 等. 硫酸盐和干湿循环作用下玄武岩纤维混凝土劣化规律[J]. 土木工程学报, 2021, 54(11): 37-46. GAN L, WU J, SHEN Z Z, et al. Deterioration law of basalt fiber reinforced concrete under sulfate attack and dry-wet cycle[J]. China Civil Engineering Journal, 2021, 54(11): 37-46 (in Chinese). [21] 李福海, 高 浩, 唐慧琪, 等. 短切玄武岩纤维混凝土基本性能试验研究[J]. 铁道科学与工程学报, 2022, 19(2): 419-427. LI F H, GAO H, TANG H Q, et al. Basic properties and shrinkage model of chopped basalt fiber concrete[J]. Journal of Railway Science and Engineering, 2022, 19(2): 419-427 (in Chinese). [22] 李忠良. 玄武岩纤维增强机场道面混凝土的力学性能研究[D]. 沈阳: 沈阳工业大学, 2014. LI Z L. Study on mechanical properties of basalt fiber reinforced concrete for airport pavement[D]. Shenyang: Shenyang University of Technology, 2014 (in Chinese). [23] 胡艳丽, 高培伟, 李富荣, 等. 不同取代率的橡胶混凝土力学性能试验研究[J]. 建筑材料学报, 2020, 23(1): 85-92. HU Y L, GAO P W, LI F R, et al. Experimental study on mechanical properties of rubber concrete with different substitution rates[J]. Journal of Building Materials, 2020, 23(1): 85-92 (in Chinese). [24] 陈爱玖, 王 静, 马 莹. 钢纤维橡胶再生混凝土的抗冻性试验[J]. 复合材料学报, 2015, 32(4): 933-941. CHEN A J, WANG J, MA Y. Test of frost resistance for steel fiber rubber recycled concrete[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 933-941 (in Chinese). [25] 于本田, 陈延飞, 李双洋, 等. 正十四烷/石墨低温相变水泥基材料的制备及冻融损伤演化[J]. 复合材料学报, 2022, 39(6): 2864-2874. YU B T, CHEN Y F, LI S Y, et al. Preparation and freeze-thaw damage evolution of n-tetradecane/graphite low-temperature phase change cement-based materials[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2864-2874 (in Chinese). [26] SHEN Y J, WANG Y Z, WEI X, et al. Investigation on meso-debonding process of the sandstone-concrete interface induced by freeze-thaw cycles using NMR technology[J]. Construction and Building Materials, 2020, 252: 118962. [27] 郭寅川, 黄忠财, 王文真, 等. 湿热环境下SAP内养生混凝土抗碳化性能及机理研究[J]. 建筑材料学报, 2022, 25(1): 16-23. GUO Y C, HUANG Z C, WANG W Z, et al. Investigation of carbonation resistance and mechanism of SAP internal curing concrete in humid and hot environment[J]. Journal of Building Materials, 2022, 25(1): 16-23 (in Chinese). [28] 楼 瑛, 罗素蓉. 混凝土自收缩的测定及若干因素对自收缩影响规律的研究[J]. 福州大学学报(自然科学版), 2015, 43(1): 100-105. LOU Y, LUO S R. The study of how to measure autogenous shrinkage of concrete and a number of factors that inflence it[J]. Journal of Fuzhou University (Natural Science Edition), 2015, 43(1): 100-105 (in Chinese). [29] 张 鑫, 荀 绚. 混凝土自收缩测试方法及预测模型的研究进展[J]. 混凝土, 2013(2): 41-45. ZHANG X, XUN X. Test and calculation models on autogenous shrinkage of concrete[J]. Concrete, 2013(2): 41-45 (in Chinese). |