[1] KURUNOV I F, LOGINOV V N, LYAPIN S S, et al. New technological solutions to protect the lining of blast-furnace hearths[J]. Metallurgist, 2007, 51(7): 425-433. [2] 王 珍, 凌永一, 尹艺程, 等. TiC粉体合成的研究现状与展望[J]. 硅酸盐通报, 2021, 40(5): 1646-1656. WANG Z, LING Y Y, YIN Y C, et al. Research progress and perspective on synthesis of TiC powder[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1646-1656 (in Chinese). [3] 李晓英. 高钛矿渣高性能混凝土性能及其浆-骨界面作用机制研究[D]. 绵阳: 西南科技大学, 2021: 1-2. LI X Y. Study on properties and paste-aggregate interaction mechanism of high performance concrete with high titanium slag as aggregate[D].Mianyang: Southwest University of Science and Technology, 2021: 1-2 (in Chinese). [4] BERGERON B, GALOISY L, JOLLIVET P, et al. First investigations of the influence of IVB elements (Ti, Zr and Hf) on the chemical durability of soda-lime borosilicate glasses[J]. Journal of Non-Crystalline Solids, 2010, 356(44/45/46/47/48/49): 2315-2322. [5] BABU M M, PRASAD P S, VENKATESWARA R P, et al. Titanium incorporated zinc-phosphate bioactive glasses for bone tissue repair and regeneration: impact of Ti4+ on physico-mechanical and in vitro bioactivity[J]. Ceramics International, 2019, 45(17): 23715-23727. [6] LE C D, GALOISY L, IZORET L, et al. Structural role of titanium on slag properties[J]. Journal of the American Ceramic Society, 2021, 104(1): 105-113. [7] 卢 曦, 庞焯刚, 张连增, 等. TiO2对矿渣棉高温熔体黏度和结构的影响[J]. 钢铁钒钛, 2021, 42(1): 55-59. LU X, PANG Z G, ZHANG L Z, et al. Effect of TiO2 on viscosity and structure of high-temperature slag wool melts[J]. Iron Steel Vanadium Titanium, 2021, 42(1): 55-59 (in Chinese). [8] 施丽丽, 李 容, 隆 平, 等. Al2O3和TiO2含量对含钛高炉渣黏流特性及矿物组成的影响[J]. 山西冶金, 2017, 40(5): 1-3. SHI L L, LI R, LONG P, et al. Effects of Al2O3 and TiO2 contents on the viscous flow characteristics and mineral composition of titanium-bearing blast furnace slag[J]. Shanxi Metallurgy, 2017, 40(5): 1-3 (in Chinese). [9] ZHANG S F, ZHANG X, BAI C G, et al. Effect of TiO2 content on the structure of CaO-SiO2-TiO2 system by molecular dynamics simulation[J]. ISIJ International, 2013, 53(7): 1131-1137. [10] SANDSTROM D R, LYTLE F W, WEI P S P, et al. Coordination of Ti in TiO2-SiO2 glass by X-ray absorption spectroscopy[J]. Journal of Non-Crystalline Solids, 1980, 41(2): 201-207. [11] 梁小平, 陆东旭, 王 雨, 等. CaO-B2O3-SiO2-TiO2系保护渣配位结构的计算模拟[J]. 重庆大学学报, 2015, 38(5): 135-141. LIANG X P, LU D X, WANG Y, et al. Computational simulation on the coordination structure of CaO-B2O3-SiO2-TiO2 mold fluxes system[J]. Journal of Chongqing University, 2015, 38(5): 135-141 (in Chinese). [12] 闫 华, 刘华军, 陈布新, 等. TiO2对高铝高炉渣性能和结构的影响研究[J]. 钢铁钒钛, 2022, 43(2): 118-124. YAN H, LIU H J, CHEN B X, et al. Study on the influence of TiO2 on the properties and structure of high alumina blast furnace slag[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 118-124 (in Chinese). [13] 杜惠惠, 倪 文, 高广军, 等. 钒钛矿渣制备全固废胶凝材料的初步研究[J]. 金属矿山, 2019(8): 192-197. DU H H, NI W, GAO G J, et al. Study on preparation of non-clinker cementitious materials from vanadium-titanium slag[J]. Metal Mine, 2019(8): 192-197 (in Chinese). [14] 王 帅, 吕淑珍, 赵 杰, 等. 高钛矿渣制备混凝土用矿物掺合料研究[J]. 西南科技大学学报, 2021, 36(1): 28-34. WANG S, LYU S Z, ZHAO J, et al. Preparation of mineral admixture for concrete with high titanium slag[J]. Journal of Southwest University of Science and Technology, 2021, 36(1): 28-34 (in Chinese). [15] 杨 贺, 陈 伟, 梁贺之. 脱硫石膏-钛矿渣粉复合胶凝材料力学性能研究[J]. 钢铁钒钛, 2019, 40(6): 67-72. YANG H, CHEN W, LIANG H Z. Study on mechanical properties of flue gas desulphurization gypsum-titanium slag powder composite cementitious material[J]. Iron Steel Vanadium Titanium, 2019, 40(6): 67-72 (in Chinese). [16] 孙睿杰, 何 峰, 王立格, 等. TiO2含量对高炉渣微晶玻璃结构和性能的影响[J]. 硅酸盐通报, 2019, 38(8): 2542-2548. SUN R J, HE F, WANG L G, et al. Effect of TiO2 content on structure and properties of blast furnace slag glass-ceramics[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2542-2548 (in Chinese). [17] 周明凯, 林方亮, 陈立顺, 等. SiO2含量对钛矿渣微晶玻璃晶化行为的影响[J]. 硅酸盐通报, 2022, 41(4): 1133-1140+1147. ZHOU M K, LIN F L, CHEN L S, et al. Effect of SiO2 content on crystallization behavior of titanium slag glass-ceramics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1133-1140+1147 (in Chinese). [18] MCMILLAN P. Structural studies of silicate glasses and melts—applications and limitations of Raman spectroscopy[J]. 1984, 69(7/8): 622-644. [19] XING X D, PANG Z G, MO C, et al. Effect of MgO and BaO on viscosity and structure of blast furnace slag[J]. Journal of Non-Crystalline Solids, 2020, 530: 119801. [20] ZHANG S F, ZHANG X, PENG H J, et al. Structure analysis of CaO-SiO2-Al2O3-TiO2 slag by molecular dynamics simulation and FT-IR spectroscopy[J]. ISIJ International, 2014, 54(4): 734-742. [21] 潘 峰. 铝硅酸盐矿物、玻璃和熔体结构的Raman光谱研究[D]. 北京: 中国地质大学(北京), 2006, 12-13. PAN F. A study of raman spectra of aluminosilicate minerals, glass and melts[D]. Beijing: China University of Geosciences (Beijing), 2006: 12-13 (in Chinese). [22] 许 莹, 王 娟, 窦玉博. Al-N共掺杂型ZnO薄膜的制备及其性能研究[J]. 材料工程, 2010, 38(11): 11-16. XU Y, WANG J, DOU Y B. Preparation and properties of Al-N co-doped ZnO thin films[J]. Journal of Materials Engineering, 2010, 38(11): 11-16 (in Chinese). [23] 王闻之. 稀土氧化物对高铝硅酸盐玻璃结构和力学性能的影响[D]. 海口: 海南大学, 2023, 39-41. WANG W Z, The effect of rare earth oxideson the structure and mechanical properties of high aluminum silicate glass[D]. Haikou: Hainan University, 2023, 39-41 (in Chinese). [24] BIESINGER M C, PAYNE B P, GROSVENOR A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257(7): 2717-2730. [25] ROSKOSZ M, TOPLIS M J, RICHET P. The structural role of Ti in aluminosilicate liquids in the glass transition range: insights from heat capacity and shear viscosity measurements 1[J]. Geochimica et Cosmochimica Acta, 2004, 68(3): 591-606. [26] 吕学伟, 严志明, 庞正德, 等. Al2O3对高炉渣物化性能和结构影响研究综述[J]. 钢铁, 2020, 55(2): 1-10. LYU X W, YAN Z M, PANG Z D, et al. Effect of Al2O3 on physicochemical properties and structure of blast furnace slag: review[J]. Iron & Steel, 2020, 55(2): 1-10 (in Chinese). |