[1] 魏 铭, 张长森, 王 旭, 等. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 254-263. WEI M, ZHANG C S, WANG X, et al. Alkali-activated materials modified with micro-nano additives: a review[J]. Materials Reports, 2023, 37(4): 254-263 (in Chinese). [2] MATALKAH F, ABABNEH A, AQEL R. Synthesis of calcined Kaolin-based geopolymer foam: assessment of mechanical properties, thermal insulation, and elevated temperature stability[J]. Ceramics International, 2023, 49(6): 9967-9977. [3] 任韦波, 许金余, 白二雷. 地聚物基陶瓷纤维混凝土高温性能的超声脉冲研究[J]. 混凝土, 2013(5): 31-34. REN W B, XU J Y, BAI E L. Study on the high temperature performance of geopolymer based ceramic fiber reinforced concrete by ultrasonic pulse method[J]. Concrete, 2013(5): 31-34 (in Chinese). [4] 任韦波, 许金余, 白二雷, 等. 高温后陶瓷纤维增强地聚物混凝土性能与声学损伤的关系[J]. 材料热处理学报, 2014, 35(3): 13-19. REN W B, XU J Y, BAI E L, et al. Relationship between properties and ultrasonic damaged characteristics of ceramic fiber reinforced geopolymeric concrete after heating at elevated temperatures[J]. Transactions of Materials and Heat Treatment, 2014, 35(3): 13-19 (in Chinese). [5] 潘钦锋, 陈亚辉, 颜桂云, 等. 钢纤维地质聚合物混凝土静态力学性能研究[J]. 武汉大学学报(工学版), 2023, 56(5): 575-583. PAN Q F, CHEN Y H, YAN G Y, et al. Study on static mechanical properties of steel fiber geo-polymer concrete[J]. Engineering Journal of Wuhan University, 2023, 56(5): 575-583 (in Chinese). [6] 田崇霏, 王亚洲, 刘晓海, 等. 混掺纤维对粉煤灰-矿渣基地质聚合物工作性及力学性能的影响研究[J]. 混凝土, 2023(4): 115-119. TIAN C F, WANG Y Z, LIU X H, et al. Study on the effect of mixed fiber on the workability and mechanical properties of fly ash-slag based geopolymer[J]. Concrete, 2023(4): 115-119 (in Chinese). [7] BABU J S, SAI K K. Mechanical properties of steel fiber reinforced geopolymer concrete incorporated with fly-ash and GGBS[J]. Materials Science Forum, 2022, 1075: 183-190. [8] 张新荔, 张佳宇, 李振洋. 植物纤维增强地质聚合物研究进展[J]. 化工新型材料, 2023, 51(2): 46-51. ZHANG X L, ZHANG J Y, LI Z Y. Research progress of plant fibers reinforced geopolymers[J]. New Chemical Materials, 2023, 51(2): 46-51 (in Chinese). [9] WANG Y M, HU S W, HE Z. Mechanical and fracture properties of geopolymer concrete with basalt fiber using digital image correlation[J]. Theoretical and Applied Fracture Mechanics, 2021, 112: 102909. [10] 张雷苏, 何胜豪, 周华飞, 等. 矿渣掺量对粉煤灰基地质聚合物混凝土高温性能的影响[J]. 新型建筑材料, 2020, 47(10): 36-39+48. ZHANG L S, HE S H, ZHOU H F, et al. The influence of slag content on the high temperature performance of fly ash based geopolymer concrete[J]. New Building Materials, 2020, 47(10): 36-39+48 (in Chinese). [11] 张新想, 张大明, 任凤玉, 等. 煤矸石基地质聚合物混凝土梁高温性能研究[J]. 混凝土, 2023(3): 86-91. ZHANG X X, ZHANG D M, REN F Y, et al. Study on high temperature performance of coal gangue based geopolymer concrete beams[J]. Concrete, 2023(3): 86-91 (in Chinese). [12] ELALAOUI O. Effect of short fibers on fracture properties of epoxy-based polymer concrete exposed to high temperatures[J]. Polymers, 2023, 15(5): 1078. [13] 叶建峰, 刘宪成, 颜桂云, 等. 钢纤维地质聚合物混凝土冲击力学性能研究[J]. 振动与冲击, 2023, 42(3): 1-11. YE J F, LIU X C, YAN G Y, et al. Impact mechanical properties of steel fiber geopolymer concrete[J]. Journal of Vibration and Shock, 2023, 42(3): 1-11 (in Chinese). [14] 王 晶, 张耀君, 王亚超. 沥青及聚丙烯纤维增韧粉煤灰-矿渣基地质聚合物的制备[J]. 硅酸盐通报, 2013, 32(7): 1432-1437. WANG J, ZHANG Y J, WANG Y C. Preparation of fly ash and slag based geopolymer toughened by asphalt and polypropylene fiber[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(7): 1432-1437 (in Chinese). [15] WANG Z H, BAI E L, REN B, et al. Effects of temperature and basalt fiber on the mechanical properties of geopolymer concrete under impact loads of different high strain rates[J]. Journal of Building Engineering, 2023, 72: 106605. [16] 杨永民. 高抗海水侵蚀玄武岩纤维筋增强地质聚合物混凝土的研究与工程应用[D]. 广州: 华南理工大学, 2018. YANG Y M. Research and engineering application of geopolymer concrete reinforced with basalt fiber reinforcement with high seawater corrosion resistance[D].Guangzhou: South China University of Technology, 2018 (in Chinese). |