[1] ACI Committee 229. Report on controlled low-strength materials: ACI 229R-13[S]. Farmington Hills: American Concrete Institute, 2013. [2] 林 峰. 废弃轻质混凝土可控低强材料的制备及性能评价[J]. 混凝土, 2023(4): 188-191. LIN F. Preparation and performance evaluation of controlled low-strength materials incorporating waste lightweight concrete[J]. Concrete, 2023(4): 188-191 (in Chinese). [3] 刘 浩, 朱祐增, 黄 锐, 等. 建筑废土制备可控低强度材料的试验研究[J]. 科学技术与工程, 2022, 22(26): 11736-11744. LIU H, ZHU Y Z, HUANG R, et al. Experimental study on preparation of controllable low strength materials from building waste soil[J]. Science Technology and Engineering, 2022, 22(26): 11736-11744 (in Chinese). [4] PUPPALA A J, CHITTOORI B, RAAVI A. Flowability and density characteristics of controlled low-strength material using native high-plasticity clay[J]. Journal of Materials in Civil Engineering, 2015, 27(1): 06014026-06014032. [5] 王 帅. 利用地铁盾构渣土制备可控低强度材料的研究[D]. 郑州: 郑州大学, 2020. WANG S. Study on preparation of controllable low-strength materials from subway shield dregs[D]. Zhengzhou: Zhengzhou University, 2020 (in Chinese). [6] SHEEN Y N, ZHANG L H, LE D H. Engineering properties of soil-based controlled low-strength materials as slag partially substitutes to Portland cement[J]. Construction and Building Materials, 2013, 48: 822-829. [7] 朱浩泽, 于峰泉, 耿 健, 等. 钛石膏基可控低强度材料强度及体积稳定性研究[J]. 硅酸盐通报, 2021, 40(11): 3644-3653. ZHU H Z, YU F Q, GENG J, et al. Strength and volume stability of controlled low-strength material based on titanium gypsum[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3644-3653 (in Chinese). [8] DO T M, KANG G O, KIM Y S. Development of a new cementless binder for controlled low strength material (CLSM) using entirely by-products[J]. Construction and Building Materials, 2019, 206: 576-589. [9] DO T M, KIM Y S, DANG M Q. Influence of curing conditions on engineering properties of controlled low strength material made with cementless binder[J]. KSCE Journal of Civil Engineering, 2017, 21(5): 1774-1782. [10] DO T M, KANG G O, GO G H, et al. Evaluation of coal ash-based CLSM made with cementless binder as a thermal grout for borehole heat exchangers[J]. Journal of Materials in Civil Engineering, 2019, 31(6): 040190721-0401907211. [11] ETXEBERRIA M, AINCHIL J, PÉREZ M E, et al. Use of recycled fine aggregates for control low strength materials (CLSMs) production[J]. Construction and Building Materials, 2013, 44: 142-148. [12] 李 飞, 刘晨辉, 吴英彪, 等. 建筑垃圾再生材料对可控低强材料(CLSM)性能影响研究[J]. 混凝土, 2018(8): 71-73+78. LI F, LIU C H, WU Y B, et al. Influence of construction and demolished waste on controlled low strength material(CLSM)[J]. Concrete, 2018(8): 71-73+78 (in Chinese). [13] 金伟良, 赵羽习. 混凝土结构耐久性研究的回顾与展望[J]. 浙江大学学报(工学版), 2002, 36(4): 371-380+403. JIN W L, ZHAO Y X. State-of-the-art on durability of concrete structures[J]. Journal of Zhejiang University (Engineering Science), 2002, 36(4): 371-380+403.(in Chinese) [14] 王福晋, 赵 磊, 梁 勇, 等. 建筑垃圾渣土制备固化土配合比参数研究[J]. 建筑技术, 2021, 52(7): 801-804. WANG F J, ZHAO L, LIANG Y, et al. Study on mix proportion parameters of solidified soil prepared from construction waste soil[J]. Architecture Technology, 2021, 52(7): 801-804 (in Chinese). [15] ASTM International. Standard test method for flow consistency of controlled low strength material: ASTM D 6103-17[S]. West Conshohocken, PA: American Society for Testing and Materials, 2017. [16] ASTM International. Standard test method for expansion and bleeding of freshly mixed grouts for preplaced-aggregate concrete in the laboratory: ASTM C 940-16[S]. West Conshohocken, PA: American Society for Testing and Materials, 2016. [17] 中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Test method standard for basic properties of building mortar: JGJ/T 70—2009[S]. Beijing: China Construction Industry Press,2009 (in Chinese). [18] 郑伟成, 赵 令, 张 浩, 等. 矿渣-硅灰协同强化钢渣水化反应机理[J]. 钢铁, 2022, 57(5): 146-155. ZHENG W C, ZHAO L, ZHANG H, et al. Activation mechanisms of silica fume and blast furnace slag on steel slag hydrated gelling systems[J]. Iron & Steel, 2022, 57(5): 146-155 (in Chinese). [19] WANG X, NI W, JIN R Z, et al. Formation of Friedel’s salt using steel slag and potash mine brine water[J]. Construction and Building Materials, 2019, 220: 119-127. [20] 姜梅芬, 吕宪俊. 混凝土早强剂的研究与应用进展[J]. 硅酸盐通报, 2014, 33(10): 2527-2533. JIANG M F, LV X J. Research and application progresses of concrete early strength agent[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(10): 2527-2533 (in Chinese). [21] REIG L, SORIANO L, BORRACHERO M V, et al. Influence of calcium aluminate cement (CAC) on alkaline activation of red clay brick waste (RCBW)[J]. Cement and Concrete Composites, 2016, 65: 177-185. [22] 覃丽芳, 曲 波, 史才军, 等. 钙硅比对铝硅酸盐凝胶形成与特性的影响[J]. 材料导报, 2020, 34(12): 12057-12063. QIN L F, QU B, SHI C J, et al. Effect of Ca/Si ratio on the formation and characteristics of synthetic aluminosilicate hydrate gels[J]. Materials Reports, 2020, 34(12): 12057-12063 (in Chinese). [23] 李双喜, 李宛强. 钙基膨润土对碱激发复合砂浆干燥收缩性能影响[J]. 水电能源科学, 2022, 40(9): 172-175. LI S X, LI W Q. Effect of Ca-bentonite on dry shrinkage of alkali-activated composite mortar[J]. Water Resources and Power, 2022, 40(9): 172-175 (in Chinese). [24] 周文芳, 陈 瑜. 水泥基材料化学收缩和自收缩研究综述[J]. 中外公路, 2013, 33(4): 300-303. ZHOU W F, CHEN Y. Review on chemical shrinkage and autogenous shrinkage of cement-based materials[J]. Journal of China & Foreign Highway, 2013, 33(4): 300-303 (in Chinese). [25] 孙 浩, 马志斌, 路广军. 粉煤灰碱激发制备地质聚合物研究进展[J]. 洁净煤技术, 2022, 12(28): 14. SUN H, MA Z B, LU G J. A review on geopolymer preparation by alkali activation of coal fly ash[J]. Clean Coal Technology, 2022, 12(28): 14 (in Chinese). [26] 王海龙, 申向东. 水泥掺量对固化土早期结构形成的影响[J]. 硅酸盐通报, 2011, 30(2): 469-473. WANG H L, SHEN X D. Effect of cement content on the early structural formation of stabilized soil[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(2): 469-473 (in Chinese). [27] 崔孝炜, 倪 文, 任 超. 钢渣矿渣基全固废胶凝材料的水化反应机理[J]. 材料研究学报, 2017, 31(9): 687-694. CUI X W, NI W, REN C. Hydration mechanism of all solid waste cementitious materials based on steel slag and blast furnace slag[J]. Chinese Journal of Materials Research, 2017, 31(9): 687-694 (in Chinese). [28] 柯国军, 杨晓峰, 彭 红, 等. 化学激发粉煤灰活性机理研究进展[J]. 煤炭学报, 2005, 30(3): 366-370. KE G J, YANG X F, PENG H, et al. Progress of research on chemical activating mechanisms of fly ash[J]. Journal of China Coal Society, 2005, 30(3): 366-370 (in Chinese). [29] SHI C J, DAY R L. Acceleration of the reactivity of fly ash by chemical activation[J]. Cement and Concrete Research, 1995, 25(1): 15-21. [30] 何 俊, 王小琦, 石小康, 等. 碱渣-矿渣固化淤泥的无侧限抗压强度与微观特征[J]. 应用基础与工程科学学报, 2021, 29(2): 376-386. HE J, WANG X Q, SHI X K, et al. Unconfined compressive strength and microscopic characteristics of soft soil solidified with soda residue and ground granulated blast furnace slag[J]. Journal of Basic Science and Engineering, 2021, 29(2): 376-386 (in Chinese). [31] 管中强, 乔长录, 吴文勇, 等. 氯化钙/草酸体系活化黄河泥沙的力学性能研究[J]. 混凝土, 2022(6): 153-156. GUAN Z Q, QIAO C L, WU W Y, et al. Activation of Yellow River sediment by calcium chloride/oxalic acid system and study of mechanical properties[J]. Concrete, 2022(6): 153-156 (in Chinese). [32] 程 寅, 黄 新. 氯盐对碱激发矿渣净浆强度影响试验[J]. 北京航空航天大学学报, 2015, 41(4): 693-700. CHENG Y, HUANG X. Experiment of chloride effect on strength of alkali-activated slag paste[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 693-700 (in Chinese). [33] 罗鹏翔, 邓念东, 解 耿, 等. 氯化钙激发粉煤灰基充填材料水化的机理及动力学特征[J]. 环境工程, 2023, 41(6): 62-70. LUO P X, DENG N D, XIE G, et al. Hydration mechanism and kinetic characteristics of cacl2 exciting fly ash paste filling materials[J]. Environmental Engineering, 2023, 41(6): 62-70 (in Chinese). |