[1] TAVARES V, SOARES N, RAPOSO N, et al. Prefabricated versus conventional construction: comparing life-cycle impacts of alternative structural materials[J]. Journal of Building Engineering, 2021, 41: 102705. [2] 赵顺波, 高宇甲, 陈记豪, 等. C50泵送混凝土抗压强度和弹性模量时变性试验研究与应用[J]. 混凝土, 2015(1): 98-101. ZHAO S B, GAO Y J, CHEN J H, et al. Application and study on time-dependent compressive strength and elastic modulus of C50 pumping concrete[J]. Concrete, 2015(1): 98-101 (in Chinese). [3] 中华人民共和国交通运输部. 公路桥涵施工技术规范: JTG/T 3650—2020[S]. 北京: 人民交通出版社, 2020. Ministry of Transport of the People’s Republic of China. Technical specification for construction of highway bridges and culverts: JTG/T 3650—2020[S]. Beijing: People’s Traffic Press, 2020 (in Chinese). [4] DUAN Y, WANG Q C, YANG Z J, et al. Research on the effect of steam curing temperature and duration on the strength of manufactured sand concrete and strength estimation model considering thermal damage[J]. Construction and Building Materials, 2022, 315: 125531. [5] 贡鑫茹, 李 东, 耿 健. 蒸养机制砂混凝土的毛细吸水特性[J]. 混凝土与水泥制品, 2021(1): 95-99. GONG X R, LI D, GENG J. Water absorption of steam curing machine-made sand concrete[J]. China Concrete and Cement Products, 2021(1): 95-99 (in Chinese). [6] ZEYAD A M, TAYEH B A, ADESINA A, et al. Review on effect of steam curing on behavior of concrete[J]. Cleaner Materials, 2022, 3: 100042. [7] CHEN B, CHEN J L, CHEN X D, et al. Experimental study on compressive strength and frost resistance of steam cured concrete with mineral admixtures[J]. Construction and Building Materials, 2022, 325: 126725. [8] 勾 煜. 粉煤灰对蒸养混凝土抗压强度的影响[J]. 混凝土, 2021(7): 86-89. GOU Y. Effect of fly ash on compressive strength of steam cured concrete[J]. Concrete, 2021(7): 86-89 (in Chinese). [9] LIU B J, XIE Y J, LI J. Influence of steam curing on the compressive strength of concrete containing supplementary cementing materials[J]. Cement and Concrete Research, 2005, 35(5): 994-998. [10] 周 岳, 周 健, 唐孟雄, 等. 粉煤灰和矿渣粉对混凝土抗氯离子渗透和抗碳化性能的影响[J]. 混凝土, 2021(7): 60-64. ZHOU Y, ZHOU J, TANG M X, et al. Influences of fly ash and slag powder on the chloride penetration resistance and carbonation resistance of concrete[J]. Concrete, 2021(7): 60-64 (in Chinese). [11] 吕德生, 汤 骅. 高强混凝土弹性模量与抗压强度的相关性试验研究[J]. 混凝土与水泥制品, 2001(6): 20-21. LV D S, TANG H. Experimental study on correlation between elastic modulus and compressive strength of high strength concrete[J]. China Concrete and Cement Products, 2001(6): 20-21 (in Chinese). [12] 欧阳雪, 史才军, 史金华, 等. 超高性能混凝土受压力学性能及其弹性模量预测[J]. 硅酸盐学报, 2021, 49(2): 296-304. OUYANG X, SHI C J, SHI J H, et al. Compressive mechanical properties and prediction for elastic modulus of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 296-304 (in Chinese). [13] 中华人民共和国交通运输部. 公路工程水泥及水泥混凝土试验规程: JTG 3420—2020[S]. 北京: 人民交通出版社, 2020. Ministry of Transport of the People’s Republic of China. Test procedures for cement and cement concrete for highway engineering: JTG 3420—2020[S]. Beijing: People’s Transportation Publishing House, 2020 (in Chinese). [14] 贺炯煌, 马昆林, 龙广成, 等. 蒸汽养护过程中混凝土力学性能的演变[J]. 硅酸盐学报, 2018, 46(11): 1584-1592. HE J H, MA K L, LONG G C, et al. Mechanical properties evolution of concrete in steam-curing process[J]. Journal of the Chinese Ceramic Society, 2018, 46(11): 1584-1592 (in Chinese). [15] 吴建东, 郭丽萍, 曹园章, 等. 蒸汽养护制度对超高性能混凝土早期力学性能及微观结构的影响[J]. 东南大学学报(自然科学版), 2022, 52(4): 744-752. WU J D, GUO L P, CAO Y Z, et al. Effect of steam curing system on the early mechanical property and microstructure of ultra-high performance concrete[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(4): 744-752 (in Chinese). [16] 宋少民, 王 林. 混凝土学[M]. 武汉: 武汉理工大学出版社, 2013. SONG S M, WANG L. Concrete Science[M]. Wuhan: Wuhan University of Technology Press, 2013 (in Chinese). [17] 朱伯芳. 大体积混凝土温度应力与温度控制[M]. 2版. 北京: 中国水利水电出版社, 2012. ZHU B F. Temperature stress and temperature control of mass concrete[M]. 2nd ed. Beijing: China Water Power Press, 2012 (in Chinese). [18] 陈 伟, 张文博, 毛明杰, 等. 基于数理统计的混凝土抗压-劈裂抗拉强度关系式的研究[J]. 宁夏工程技术, 2016, 15(2): 118-122. CHEN W, ZHANG W B, MAO M J, et al. Study on the relationship between compressive-splitting tensile strength of concrete based on mathematical statistics[J]. Ningxia Engineering Technology, 2016, 15(2): 118-122 (in Chinese). [19] 丁发兴, 余志武. 混凝土受拉力学性能统一计算方法[J]. 华中科技大学学报(城市科学版), 2004, 21(3): 29-34. DING F X, YU Z W. Unified calculation method of mechanical properties of concrete in tension[J]. Journal of Wuhan Urban Construction Institute, 2004, 21(3): 29-34 (in Chinese). [20] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2010 (in Chinese). [21] ACI Committee 318. Building code requirements for structural concrete and commentary: ACI-318[S]. Detroit: American Concrete Institute, 2014. [22] DU-BETON C E I. CEB-FIP model code 1990: CEB-90[S]. London: Thomas Telford Publishing, 1993. [23] 余 波, 陶伯雄, 刘 阳, 等. 基于混凝土抗压强度的弹性模量概率预测模型[J]. 混凝土, 2017(10): 7-11. YU B, TAO B X, LIU Y, et al. Probabilistic prediction model of elastic modulus based on compressive strength of concrete[J]. Concrete, 2017(10): 7-11 (in Chinese). [24] 杨 斌, 盛 彬, 王珺卓, 等. 粉煤灰与矿渣在单掺和复掺情况下对混凝土强度的影响研究[J]. 中外公路, 2017, 37(3): 212-215. YANG B, SHENG B, WANG J Z, et al. Study on the influence of fly ash and slag on concrete strength under the condition of single admixture and compound admixture[J]. Journal of China & Foreign Highway, 2017, 37(3): 212-215 (in Chinese). [25] 汪一格, 任龙芳, 荣国城, 等. 超细石灰石粉和矿粉复掺制备机制砂混凝土的研究[J]. 新型建筑材料, 2023, 50(5): 21-24. WANG Y G, REN L F, RONG G C, et al. Study on the preparation of machine-made sand concrete with superfine limestone powder and mineral powder[J]. New Building Materials, 2023, 50(5): 21-24 (in Chinese). [26] 李汪阳, 程磊科, 刘慧慧等. 石灰石粉作为矿物掺合料对机制砂混凝土力学性能及耐久性的影响[J].混凝土, 2023(10): 82-86. LI W Y, CHENG L K, LIU H H et al. Effect of limestone powder as mineral admixture on mechanical properties and durability of concrete with manufactured sand[J]. Concrete, 2023(10): 82-86 (in Chinese). [27] 刘 方, 何 涛, 夏京亮, 等. 岩石粉对普通混凝土工作性能与长龄期强度的影响[J]. 新型建筑材料, 2021, 48(10): 55-60. LIU F, HE T, XIA J L, et al. Effect of rock powder on workability and long-age strength of ordinary concrete[J]. New Building Materials, 2021, 48(10): 55-60 (in Chinese). |