[1] SHI C J, JIMÉNEZ A F, PALOMO A. New cements for the 21st century: the pursuit of an alternative to Portland cement[J]. Cement and Concrete Research, 2011, 41(7): 750-763. [2] PENG H, CUI C, LIU Z, et al. Synthesis and reaction mechanism of an alkali-activated metakaolin-slag composite system at room temperature[J]. Journal of Materials in Civil Engineering, 2019, 31(1): 1-8. [3] PHAVONGKHAM V, WATTANASIRIWECH S, WATTANASIRIWECH D. Tailored design of properties of Hongsa fly ash-based geopolymer paste via an adjustment of the alkali activator composition[J]. Ceramics International, 2021, 47(10): 13374-13380. [4] WARDHONO A. The effect of water binder ratio on strength development of class C fly ash geopolymer mortar prepared by dry geopolymer powder[J]. MATEC Web of Conferences, 2019, 258: 05032. [5] KUMAR POLOJU K, SRINIVASU K. Influence of GGBS and concentration of sodium hydroxide on strength behavior of geopolymer mortar[J]. Materials Today: Proceedings, 2022, 65: 702-706. [6] NEUPANE K. High-strength geopolymer concrete properties, advantages and challenges[J]. Advances in Materials, 2018, 7(2): 15. [7] THOMAS R J, LEZAMA D, PEETHAMPARAN S. On drying shrinkage in alkali-activated concrete: improving dimensional stability by aging or heat-curing[J]. Cement and Concrete Research, 2017, 91: 13-23. [8] CASTEL A, FOSTER S J, NG T, et al. Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer concrete[J]. Materials and Structures, 2016, 49(5): 1619-1628. [9] 赵人达, 王永宝, 原 元, 等. 地聚物混凝土收缩研究综述[J]. 硅酸盐通报, 2020, 39(6): 1695-1702. ZHAO R D, WANG Y B, YUAN Y, et al. Review on shrinkage of geopolymer concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1695-1702 (in Chinese). [10] HOJATI M, RADLIŃSKA A. Shrinkage and strength development of alkali-activated fly ash-slag binary cements[J]. Construction and Building Materials, 2017, 150: 808-816. [11] 钱益想. 粉煤灰地聚合物收缩性能试验研究[D]. 长沙: 长沙理工大学, 2017. QIAN Y X. Experimental study on shrinkage performance of fly ash geopolymer[D]. Changsha: Changsha University of Science & Technology, 2017 (in Chinese). [12] ZHU X H, TANG D S, YANG K, et al. Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete[J]. Construction and Building Materials, 2018, 175: 467-482. [13] NETO A A M, CINCOTTO M A, REPETTE W. Mechanical properties, drying and autogenous shrinkage of blast furnace slag activated with hydrated lime and gypsum[J]. Cement and Concrete Composites, 2010, 32(4): 312-318. [14] 王爱国, 郑 毅, 张祖华, 等. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560. WANG A G, ZHENG Y, ZHANG Z H, et al. Research progress of geopolymer cementitious material modification for improving durability of concrete[J]. Materials Reports, 2019, 33(15): 2552-2560 (in Chinese). [15] 杨永民, 李兆恒, 张同生, 等. 活性氧化镁补偿无机聚合物浆体收缩的作用机制[J]. 华南理工大学学报(自然科学版), 2017, 45(9): 102-109. YANG Y M, LI Z H, ZHANG T S, et al. Reaction mechanism of compensating shrinkage of inorganic polymer pastes by using reactive MgO[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(9): 102-109 (in Chinese). |