[1] YAO Y, SUN H H. A novel silica alumina-based backfill material composed of coal refuse and fly ash[J]. Journal of Hazardous Materials, 2012, 213/214: 71-82. [2] GARDNER L J, BERNAL S A, WALLING S A, et al. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag[J]. Cement and Concrete Research, 2015, 74: 78-87. [3] ZHU L, DONG Y C, HAMPSHIRE S, et al. Waste-to-resource preparation of a porous ceramic membrane support featuring elongated mullite whiskers with enhanced porosity and permeance[J]. Journal of the European Ceramic Society, 2015, 35(2): 711-721. [4] LUZ A P, SILVA NETO A B, SANTOS T Jr, et al. Mullite-based refractory castable engineering for the petrochemical industry[J]. Ceramics International, 2013, 39(8): 9063-9070. [5] ZHANG Y, HUANG Y, ZHANG T F, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Advanced Materials, 2015, 27(12): 2049-2053. [6] MENG F B, WANG H G, HUANG F, et al. Graphene-based microwave absorbing composites: a review and prospective[J]. Composites Part B: Engineering, 2018, 137: 260-277. [7] QUAN B, SHI W H, ONG S J H, et al. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications[J]. Advanced Functional Materials, 2019, 29(28): 1901236. [8] GUPTA S, TAI N H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band[J]. Carbon, 2019, 152: 159-187. [9] LI J S, XIE Y Z, LU W B, et al. Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films[J]. Carbon, 2018, 129: 76-84. [10] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. [11] MA J R, WANG X X, CAO W Q, et al. A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures[J]. Chemical Engineering Journal, 2018, 339: 487-498. [12] SINGH S K, AKHTAR M J, KAR K K. Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber[J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24816-24828. [13] WANG G Z, GAO Z, TANG S W, et al. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition[J]. ACS Nano, 2012, 6(12): 11009-11017. [14] CHEN T T, DENG F, ZHU J, et al. Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties[J]. Journal of Materials Chemistry, 2012, 22(30): 15190. [15] WANG L N, JIA X L, LI Y F, et al. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles[J]. Journal of Materials Chemistry A, 2014, 2(36): 14940. [16] WANG G Z, PENG X G, YU L, et al. Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition[J]. Journal of Materials Chemistry A, 2015, 3(6): 2734-2740. [17] LIU J W, CHE R C, CHEN H J, et al. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells[J]. Small, 2012, 8(8): 1214-1221. [18] XIAO J, LI F C, ZHONG Q F, et al. Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC[J]. Hydrometallurgy, 2015, 155: 118-124. [19] 田玉明,朱保顺,力国民,等.煤矸石掺量对陶粒支撑剂性能的影响[J].硅酸盐学报,2019,47(3):365-369. TIAN Y M, ZHU B S, LI G M, et al. Influence of coal gangue amount on properties of ceramic proppants[J]. Journal of the Chinese Ceramic Society, 2019, 47(3): 365-369 (in Chinese). [20] YUVARAJ S, LIN F Y, TSONG-HUEI C, et al. Thermal decomposition of metal nitrates in air and hydrogen environments[J]. The Journal of Physical Chemistry B, 2003, 107(4): 1044-1047. [21] ZHOU Q S, LI C, LI X B, et al. Reaction behavior of ferric oxide in system Fe2O3-SiO2-Al2O3 during reductive sintering process[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(3): 842-848. [22] 陈肇友,柴俊兰,李 勇.氧化亚铁与铁铝尖晶石的形成[J].耐火材料,2005,39(3):207-210. CHEN Z Y, CHAI J L, LI Y. Formations of ferrous oxide and hercynite[J]. Refractories, 2005, 39(3): 207-210 (in Chinese). [23] ŌYA A, ŌTANI S. Catalytic graphitization of carbons by various metals[J]. Carbon, 1979, 17(2): 131-137. [24] HUANG T, WU Z C, YU Q, et al. Preparation of hierarchically porous carbon/magnetic particle composites with broad microwave absorption bandwidth[J]. Chemical Engineering Journal, 2019, 359: 69-78. [25] SUN G B, DONG B X, CAO M H, et al. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption[J]. Chemistry of Materials, 2011, 23(6): 1587-1593. [26] LI G M, MAO L T, ZHU B S, et al. The novel ceramic-based microwave absorbents derived from gangue[J]. Journal of Materials Chemistry C, 2020, 8(40): 14283-14245. [27] SUN G B, DONG B X, CAO M H, et al. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption[J]. Chemistry of Materials, 2011, 23(6), 1587-1593. [28] TONEGUZZO P, ACHER O, VIAU G, et al. Observations of exchange resonance modes on submicrometer sized ferromagnetic particles[J]. Journal of Applied Physics, 1997, 81(8): 5546-5548. |