BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2021, Vol. 40 ›› Issue (3): 999-1006.
• New Functional Materials • Previous Articles Next Articles
SHENG Hao1, LIU Lin1, XU Jian1, LU Huanming2
Received:
2020-10-24
Revised:
2020-12-08
Online:
2021-03-15
Published:
2021-04-13
[1] 林晓君,司徒丹娜,胡宁洋,等.掺杂ZnO微纳米材料的制备及应用研究[J].广州化工,2020,48(1):20-22. LIN X J, SITU D N, HU N Y, et al. Fabrication and application of doped ZnO micro- and nano-materials[J]. Guangzhou Chemical Industry, 2020, 48(1): 20-22 (in Chinese). [2] PALIWAL A, SHARMA A, TOMAR M, et al. Carbon monoxide (CO) optical gas sensor based on ZnO thin films[J]. Sensors and Actuators B: Chemical, 2017, 250: 679-685. [3] PONHAN W, PHADUNGDHITIDHADA S, CHOOPUN S. Fabrication of ethanol sensors based on ZnO thin film field-effect transistor prepared by thermal evaporation deposition[J]. Materials Today: Proceedings, 2017, 4(5): 6342-6348. [4] EDINGER S, BANSAL N, BAUCH M, et al. Highly transparent and conductive indium-doped zinc oxide films deposited at low substrate temperature by spray pyrolysis from water-based solutions[J]. Journal of Materials Science, 2017, 52(14): 8591-8602. [5] CHOO T F, SAIDIN N U, KOK K Y. A novel self-heating zinc oxide/indium tin oxide based hydrogen gas sensor: dual sensing mode of hydrogen gas detection[J]. Chemical Physics Letters, 2018, 713: 180-184. [6] 吴兴东,吴兆丰.ZnO基透明导电薄膜的研究应用进展[J].科技视界,2012(3):54-57. WU X D, WU Z F. Research and application progress of ZnO-based transparent conductive film[J]. Science & Technology Vision, 2012(3): 54-57 (in Chinese). [7] HAGHSHENAS S S P, NEMATI A, SIMCHI R, et al. Photocatalytic and photoluminescence properties of ZnO/graphene quasi core-shell nanoparticles[J]. Ceramics International, 2019, 45(7): 8945-8961. [8] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. [9] WANG J G, MA F C, SUN M T. Graphene, hexagonal boron nitride, and their heterostructures: properties and applications[J]. RSC Advances, 2017, 7(27): 16801-16822. [10] WAN Q, WANG H Y, LI S Y, et al. Efficient liquid-phase exfoliation of few-layer graphene in aqueous 1, 1, 3, 3-tetramethylurea solution[J]. Journal of Colloid and Interface Science, 2018, 526: 167-173. [11] HINTZE C, MORITA K, RIEDEL R, et al. Facile sol-gel synthesis of reduced graphene oxide/silica nanocomposites[J]. Journal of the European Ceramic Society, 2016, 36(12): 2923-2930. [12] LI X S, MAGNUSON C W, VENUGOPAL A, et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper[J]. Journal of the American Chemical Society, 2011, 133(9): 2816-2819. [13] JASTRZĘBSKA A M, KARCZ J, LETMANOWSKI R, et al. Synthesis of RGO/TiO2 nanocomposite flakes and characterization of their unique electrostatic properties using zeta potential measurements[J]. Journal of Alloys and Compounds, 2016, 679: 470-484. [14] ZHANG X J, DONG P Y, ZHANG B G, et al. Preparation and characterization of reduced graphene oxide/copper composites incorporated with nano-SiO2 particles[J]. Journal of Alloys and Compounds, 2016, 671: 465-472. [15] CHUA C K, PUMERA M. Covalent chemistry on graphene[J]. Chemical Society Reviews, 2013, 42(8): 3222-3233. [16] CHENG C, LI D. Solvated graphenes: an emerging class of functional soft materials[J]. Advanced Materials, 2013, 25(1): 13-30. [17] 张则瑞,吴建东,王立国,等.氧化石墨烯(GO)在水泥基复合材料中的应用研究进展[J].硅酸盐通报,2017,36(9):3008-3012+3019. ZHANG Z R, WU J D, WANG L G, et al. Research progress on application of graphene oxide in cement matrix composites[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(9): 3008-3012+3019 (in Chinese). [18] WEI S Y, YU Q X, FAN Z G, et al. Fabricating high thermal conductivity rGO/polyimide nanocomposite films via a freeze-drying approach[J]. RSC Advances, 2018, 8(39): 22169-22176. [19] RODWIHOK C, WONGRATANAPHISAN D, THINGO Y L, et al. Effect of GO additive in ZnO/rGO nanocomposites with enhanced photosensitivity and photocatalytic activity[J]. Nanomaterials, 2019, 9(10): 1441. [20] 韩军凯,冯奕钰,封 伟.掺杂石墨烯制备方法新进展[J].天津大学学报(自然科学与工程技术版),2020,53(5):467-474. HAN J K, FENG Y Y, FENG W. Recent research progress in doped-graphene preparation[J]. Journal of Tianjin University (Science and Technology), 2020, 53(5): 467-474 (in Chinese). [21] 匡 达,胡文彬.石墨烯复合材料的研究进展[J].无机材料学报,2013,28(3):235-246. KUANG D, HU W B. Research progress of graphene composites[J]. Journal of Inorganic Materials, 2013, 28(3): 235-246 (in Chinese). [22] VAN TUAN P, PHUONG T T, TAN V T, et al. In-situ hydrothermal fabrication and photocatalytic behavior of ZnO/reduced graphene oxide nanocomposites with varying graphene oxide concentrations[J]. Materials Science in Semiconductor Processing, 2020, 115: 105114. [23] 许兰兰,王 松,刘玉霞,等.微波法合成金属-有机骨架材料研究应用进展[J].化工新型材料,2019,47(4):1-5. XU L L, WANG S, LIU Y X, et al. Advance on research and application of MOF prepared by MW method[J]. New Chemical Materials, 2019, 47(4): 1-5 (in Chinese). [24] DOU P T, TAN F T, WANG W, et al. One-step microwave-assisted synthesis of Ag/ZnO/graphene nanocomposites with enhanced photocatalytic activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 302: 17-22. [25] AZIZ T N T A, ROSLI A B, YUSOFF M M, et al. Transparent hybrid ZnO-graphene film for high stability switching behavior of memristor device[J]. Materials Science in Semiconductor Processing, 2019, 89: 68-76. [26] GÜLER Ö, GÜLER S H, BAŞGÖZ Ö, et al. Synthesis and characterization of ZnO-reinforced with graphene nanolayer nanocomposites: electrical conductivity and optical band gap analysis[J]. Materials Research Express, 2019, 6(9): 095602. [27] SHAO S F, CHEN X, CHEN Y Y, et al. ZnO nanosheets modified with graphene quantum dots and SnO2 quantum nanoparticles for room-temperature H2S sensing[J]. ACS Applied Nano Materials, 2020, 3(6): 5220-5230. [28] DRMOSH Q A, YAMANI Z H, HENDI A H, et al. A novel approach to fabricating a ternary rGO/ZnO/Pt system for high-performance hydrogen sensor at low operating temperatures[J]. Applied Surface Science, 2019, 464: 616-626. [29] 李 琦,罗志刚,陈大勇,等.氧化锌/石墨烯复合材料的制备及其光催化性能[J].上海大学学报(自然科学版),2020,26(3):425-432. LI Q, LUO Z G, CHEN D Y, et al. Preparation and photocatalytic properties of ZnO/graphene composite[J]. Journal of Shanghai University (Natural Science Edition), 2020, 26(3): 425-432 (in Chinese). [30] SU B T, DONG Y Y, JIN Z J, et al. Enhanced photocatalytic performance of ZnO/rGO composite materials prepared via an improved two-steps method[J]. Ceramics International, 2016, 42(6): 7632-7638. [31] WANG K, XU J M, WANG X T. The effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites[J]. Applied Surface Science, 2016, 360: 270-275. [32] FENG Y, FENG N N, WEI Y Z, et al. An in situ gelatin-assisted hydrothermal synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light[J]. RSC Advances, 2014, 4(16): 7933. [33] 唐 伟.基于碳纳米材料的柔性气体传感器的研究进展[J].硅酸盐通报,2019,38(2):398-409. TANG W. Research progress of flexible gas sensors based on carbon nanomaterials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 398-409 (in Chinese). [34] BALASUBRAMANI V, SURESHKUMAR S, RAO T S, et al. Impedance spectroscopy-based reduced graphene oxide-incorporated ZnO composite sensor for H2S investigations[J]. ACS Omega, 2019, 4(6): 9976-9982. [35] ALFANO B, MIGLIETTA M L, POLICHETTI T, et al. Improvement of NO2 detection: graphene decorated with ZnO nanoparticles[J]. IEEE Sensors Journal, 2019, 19(19): 8751-8757. [36] CAO P J, CAI Y Z, PAWAR D, et al. Down to ppb level NO2 detection by ZnO/rGO heterojunction based chemiresistive sensors[J]. Chemical Engineering Journal, 2020, 401: 125491. [37] UGALE A D, UMARJI G G, JUNG S H, et al. ZnO decorated flexible and strong graphene fibers for sensing NO2 and H2S at room temperature[J]. Sensors and Actuators B: Chemical, 2020, 308: 127690. [38] GALSTYAN V, COMINI E, KHOLMANOV I, et al. Reduced graphene oxide/ZnO nanocomposite for application in chemical gas sensors[J]. RSC Advances, 2016, 6(41): 34225-34232. [39] DHINGRA V, KUMAR S, KUMAR R, et al. Room temperature SO2 and H2 gas sensing using hydrothermally grown GO-ZnO nanorod composite films[J]. Materials Research Express, 2020, 7(6): 065012. [40] CHOU C T, WANG F H, CHEN W C. Effects of concentration of reduced graphene oxide on properties of sol-gel prepared Al-doped zinc oxide thin films[J]. Thin Solid Films, 2016, 605: 143-148. [41] YU X Y, XU J, LU H M, et al. Sol-gel derived Al-doped zinc oxide-reduced graphene oxide nanocomposite thin films[J]. Journal of Alloys and Compounds, 2017, 699: 79-86. [42] KINDALKAR V S, SANDEEP K M, KUMARA K, et al. Sol-gel synthesized spin coated GO∶ZnO composite thin films: optical, structural and electrical studies[J]. Materials Research Express, 2019, 6(9): 096435. [43] 何延如,田小让,赵冠超,等.石墨烯薄膜的制备方法及应用研究进展[J].材料导报,2020,34(5):5048-5060+5077. HE Y R, TIAN X R, ZHAO G C, et al. Research progress in preparation and application of graphene films[J]. Materials Reports, 2020, 34(5): 5048-5060+5077 (in Chinese). [44] TSAI Y S, CHEN Y Y, XU C Y, et al. Influence of reduced graphene oxide on material, antibacterial, and piezoelectric behaviors of ZnO nanorods on foldable indium tin oxide substrates[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(14): 13167-13173. [45] TAN Q K, KONG Z, GUAN X G, et al. Hierarchical zinc oxide/reduced graphene oxide composite: preparation route, mechanism study and lithium ion storage[J]. Journal of Colloid and Interface Science, 2019, 548: 233-243. [46] MOUSAVI S S, KAZEMPOUR A, EFAFI B, et al. Effects of graphene quantum dots interlayer on performance of ZnO-based photodetectors[J]. Applied Surface Science, 2019, 493: 1187-1194. [47] KOÇ M M, ASLAN N, ERKOVAN M, et al. Electrical characterization of solar sensitive zinc oxide doped-amorphous carbon photodiode[J]. Optik, 2019, 178: 316-326. [48] SREEJA V G, ANILA E I. Studies on the effect of reduced graphene oxide on nonlinear absorption and optical limiting properties of potassium doped zinc oxide thin film by Z-scan technique[J]. Thin Solid Films, 2019, 685: 161-167. |
[1] | LIANG Jiafeng, GUO Jianqiang, LI Yue, ZHU Qiaosi, LI Jiongli, WANG Xudong. Review on Mechanism of Graphene in Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 704-713. |
[2] | WU Yichen, GUO Rongxin, XIA Haiting, SUO Yuxia, WEI Lihuang, CHEN Jiamin. Effects of Different Dispersants on Mechanical and Electrical Properties of GO/CNFs Cement-Based Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 731-740. |
[3] | SUN Shupeng, SUN Yanhui, DONG Yuhua, HOU Tengyue, ZHENG Yangong, WANG Jing, ZHANG Zhaorui. Research and Application of Zeolite and Its Complex Gas Sensor [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(1): 280-295. |
[4] | ZHENG Huijun. High Temperature Performance of Graphite Modified Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3851-3857. |
[5] | ZHOU Wentao, LI Jianlin. Preparation and Properties of Graphene/Glass Bulk Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3998-4002. |
[6] | XIA Dong-lin;YAN Xin-zheng;QIN Ke;LI Yun-feng. Hydrothermal Growth and Characterization of ZnO Nanorods [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(4): 1132-1138. |
[7] | SHAO Jun;SANG Rong-li;GUO Feng-yan;YANG Xi-ju. Effect of Modification Method on the Adsorption Properties of Organobentonite Granules Modified with Graphene [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(3): 1094-1102. |
[8] | SHANG Zhi-biao;HUANG Xiao-feng;MA Li-ping;LIU Hong-pan;CHEN Dan-li;LIU Xiu-zhuang;ZHAO Dan;FAN Ying-ying. Effect of ZnO on Crystallization of Glass-ceramics from Yellow Phosphorus Furnace Slag [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(2): 596-601. |
[9] | LI Xiang-guo;REN Zhao-feng;XU Peng-hui;LIU Zhuo-lin;JIANG Wen-guang. Research on Mechanical Properties and Durability of Graphene Oxide Composite PVA Fiber Reinforced Cement-based Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(1): 245-250. |
[10] | SHI Zhen-wu;XUE Qun-hu;SONG Juan. Experimental Research on Preparation of Nano-ZnO by Lead-Zinc Slag [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(1): 303-308. |
[11] | DONG Chao-nan;LIN Li;HU Yong-jun;YUAN Xing-zhong;LIU Huan;YI Bin. Preparation and Performance of BiOX(X=Cl、Br、I)/Diatomite Photocatalyst [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(1): 342-346. |
[12] | ZHANG Ze-rui;WU Jian-dong;WANG Li-guo;LI Dong-xu. Research Progress on Application of Graphene Oxide in Cement Matrix Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(9): 3008-3012. |
[13] | YU Jia-min;LI Ming;JIN Jian-zhou;YU Yong-jin;LIU Meng. Research Progress of Toughening-Enhancing Materials in Oil Well Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(9): 3013-3019. |
[14] | WANG Chen;DONG Lei;SHANG Fu-liang;GAO Ling;YANG Hai-tao. Preparation of Nb2 O5-doped ZnO Ultrahigh Density Ceramic Targets [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(9): 3150-3154. |
[15] | SUN Mei-li;QIAN Hai-yan;CHEN Jing. Preparation and Photocatalytic Performance of TiO2 Thin Films [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(8): 2595-2599. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||