[1] EGGLETON B J, LUTHER-DAVIES B, RICHARDSON K. Chalcogenide photonics[J]. Nature Photonics, 2011, 5(3): 141-148. [2] KANG M, SISKEN L, COOK J, et al. Refractive index patterning of infrared glass ceramics through laser-induced vitrification[J]. Optical Materials Express, 2018, 8(9): 2722. [3] GRAF U U. Enhanced diffraction efficiency of two-dimensional phase gratings[J]. Optics Express, 2018, 26(25): 32739-32742. [4] EGGERT J, BOURDON B, NOLTE S, et al. Chirp control of femtosecond-pulse scattering from drag-reducing surface-relief gratings[J]. Photonics Research, 2018, 6(6): 542-548. [5] ZHAO Y, BAI S, DUMONT D, et al. Mechanically tunable diffraction gratings recorded on an azobenzene elastomer[J]. Advanced Materials, 2002, 14(7): 512-514. [6] CHEN H, QIN L, CHEN Y Y, et al. Refined grating fabrication using displacement talbot lithography[J]. Microelectronic Engineering, 2018, 189: 74-77. [7] BENEDIKOVIC D, ALONSO-RAMOS C, CHEBEN P, et al. Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 μm datacom wavelength band[J]. Optics Express, 2016, 24(12): 12893-12904. [8] FLEMING L A H, WACKEROW S, HOURD A C, et al. Diffractive optical element embedded in silver-doped nanocomposite glass[J]. Optics Express, 2012, 20(20): 22579-22584. [9] FLEMING L A H, GOLDIE D M, ABDOLVAND A. Imprinting of glass[J]. Optical Materials Express, 2015, 5(8): 1674. [10] LIN C G, RÜSSEL C, DAI S X. Chalcogenide glass-ceramics: functional design and crystallization mechanism[J]. Progress in Materials Science, 2018, 93: 1-44. [11] LIU Y, WU J M, YANG G, et al. Predicting the onset temperature (Tg) of GexSe1-x glass transition: a feature selection based two-stage support vector regression method[J]. Science Bulletin, 2019, 64(16): 1195-1203. [12] LEPICARD A, ADAMIETZ F, RODRIGUEZ V, et al. Demonstration of dimensional control and stabilization of second harmonic electro-optical response in chalcogenide glasses[J]. Optical Materials Express, 2018, 8(6): 1613. [13] LEPICARD A, BONDU F, KANG M, et al. Long-lived monolithic micro-optics for multispectral GRIN applications[J]. Scientific Reports, 2018, 8(1): 7388. [14] WANG D, CHENG J, CHEN W. Formation and properties of GeS2-Ga2S3-KX (X=Cl, Br, I) glasses[J]. Physics and Chemistry of Glasses, 2001, 42(2): 139-143. [15] 陈 玮,王德强,程继健,等.Ga2S3-GeS2-KCl系统玻璃的研究[J].华东理工大学学报,1998,24(4):93-97+109 CHEN W, WANG D Q, CHENG J J, et al. The formation and properties of chalcohalide glasses in the Ga2S3-GeS2-KCl system[J]. Journal of East China University of Science and Technology, 1998: 93-97+109 (in Chinese). [16] ZHANG L Q, ZHANG C H, GOU J, et al. PL and XPS study of radiation damage created by various slow highly charged heavy ions on GaN epitaxial layers[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2011, 269(23): 2835-2839. [17] HUANG R, LIU T, ZHAO Y F, et al. Angular dependent XPS study of surface band bending on Ga-polar n-GaN[J]. Applied Surface Science, 2018, 440: 637-642. [18] ISLAM A B M O, TAMBO T, TATSUYAMA C. Growth temperature dependence of GaS thin films on GaAs(001) surface[J]. Journal of Applied Physics, 1999, 85(8): 4003-4009. [19] KIM J, PARK W, LEE J H, et al. Simultaneous growth of Ga2S3 and GaS thin films using physical vapor deposition with GaS powder as a single precursor[J]. Nanotechnology, 2019, 30(38): 384001. [20] CHANDEL N, MEHTA N. Analysis of physicochemical properties in covalent network chalcogenide glasses (ChGs): critical review of theoretical modeling of chemical bond approach[J]. SN Applied Sciences, 2019, 1(7): 1-14. [21] SANJAY, KISHORE N, KUNDU R S, et al. FTIR and optical properties of various Se-S-Zn chalcogenide glasses[J]. IOP Conference Series: Materials Science and Engineering, 2015, 73: 012150. [22] LISBOA-FILHO P N, MASTELARO V R, SCHREINER W H, et al. Photo-induced effects in Ge25Ga10S65 glasses studied by XPS and XAS[J]. Solid State Ionics, 2005, 176(15/16): 1403-1409. [23] MAIT J N, SCHERER A, DIAL O, et al. Diffractive lens fabricated with binary features less than 60 nm[J]. Optics Letters, 2000, 25(6): 381-383. [24] LOPEZ A G, CRAIGHEAD H G. Subwavelength surface-relief gratings fabricated by microcontact printing of self-assembled monolayers[J]. Applied Optics, 2001, 40(13): 2068-2075. [25] YOON G, LEE D, NAM K T, et al. Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility[J]. ACS Photonics, 2018, 5(5): 1643-1647. [26] KANG M, SWISHER A M, POGREBNYAKOV A V, et al. Ultralow dispersion multicomponent thin-film chalcogenide glass for broadband gradient-index optics[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 30(39): e1803628. [27] SMITH N J, REGIER T, DUTTA I. Structure and composition of surface depletion layers in poled aluminosilicate glasses[J]. Journal of the American Ceramic Society, 2019, 102(6): 3037-3062. [28] LIPOVSKII A A, KUITTINEN M, KARVINEN P, et al. Electric field imprinting of sub-micron patterns in glass-metal nanocomposites[J]. Nanotechnology, 2008, 19(41): 415304. [29] LUO J W, HE H T, PODRAZA N J, et al. Thermal poling of soda-lime silica glass with nonblocking electrodes-part 1: effects of sodium ion migration and water ingress on glass surface structure[J]. Journal of the American Ceramic Society, 2016, 99(4): 1221-1230. [30] RASKHODCHIKOV D V, RESHETOV I V, TAGANTSEV D K, et al. Study of charge relaxation in poled silicate glasses[J]. Journal of Physics: Conference Series, 2018, 1124: 051026. [31] REDKOV A V, MELEHIN V G, RASKHODCHIKOV D V, et al. Modifications of poled silicate glasses under heat treatment[J]. Journal of Non-Crystalline Solids, 2019, 503/504: 279-283. [32] KAASIK V P, LIPOVSKII A A, RASKHODCHIKOV D V, et al. How to reveal the correct elemental concentration profiles in poled multicomponent silicate glasses from the data of secondary ion mass spectrometry (SIMS)[J]. Journal of Non-Crystalline Solids, 2019, 503/504: 397-399. [33] LIN C G, ZHU E W, WANG J S, et al. Fast Ag-ion-conducting GeS2-Sb2S3-AgI glassy electrolytes with exceptionally low activation energy[J]. The Journal of Physical Chemistry C, 2018, 122(3): 1486-1491. [34] MA B C, JIAO Q, ZHANG Y T, et al. Optimization of glass properties by substituting AgI with Ag2S in chalcogenide system[J]. Ceramics International, 2019, 45(17): 22694-22698. [35] MA B C, JIAO Q, ZHANG Y T, et al. Physical and electrochemical behaviors of AgX (X=S/I) in a GeS2-Sb2S3 chalcogenide-glass matrix[J]. Ceramics International, 2020, 46(5): 6544-6549. |