[1] HAO J G, LI W, ZHAI J W, et al. Progress in high-strain perovskite piezoelectric ceramics[J]. Materials Science and Engineering: R: Reports, 2019, 135: 1-57. [2] ZHENG T, WU J G, XIAO D Q, et al. Recent development in lead-free perovskite piezoelectric bulk materials[J]. Progress in Materials Science, 2018, 98: 552-624. [3] HONG C H, KIM H P, CHOI B Y, et al. Lead-free piezoceramics: where to move on?[J]. Journal of Materiomics, 2016, 2(1): 1-24. [4] RÖDEL J, WEBBER K G, DITTMER R, et al. Transferring lead-free piezoelectric ceramics into application[J]. Journal of the European Ceramic Society, 2015, 35(6): 1659-1681. [5] TAKENAKA T, MARUYAMA K I, SAKATA K. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics[J]. Japanese Journal of Applied Physics, 1991, 30(9B): 2236-2239. [6] DENIS L M, GLAUM J, HOFFMAN M, et al. Effect of mechanical depoling on piezoelectric properties of Na0.5Bi0.5TiO3-xBaTiO3 in the morphotropic phase boundary region[J]. Journal of Materials Science, 2018, 53(3): 1672-1679. [7] SWAIN S, KUMAR KAR S, KUMAR P. Dielectric, optical, piezoelectric and ferroelectric studies of NBT-BT ceramics near MPB[J]. Ceramics International, 2015, 41(9): 10710-10717. [8] MACHADO R, DOS SANTOS V B, OCHOA D A, et al. Elastic, dielectric and electromechanical properties of (Bi0.5Na0.5)TiO3-BaTiO3 piezoceramics at the morphotropic phase boundary region[J]. Journal of Alloys and Compounds, 2017, 690: 568-574. [9] ZHOU C R, LI Q N, XU J W, et al. Ferroelectric-quasiferroelectric-ergodic relaxor transition and multifunctional electrical properties in Bi0.5Na0.5TiO3-based ceramics[J]. Journal of the American Ceramic Society, 2018, 101(4): 1554-1565. [10] ZHOU C R, LIU X Y. Dielectric and piezoelectric properties of bismuth-containing complex perovskite solid solution of Bi1/2Na1/2TiO3-Bi(Mg2/3Nb1/3)O3[J]. Journal of Materials Science, 2008, 43(3): 1016-1019. [11] XIE H, ZHAO Y Y, XU J W, et al. Structure, dielectric, ferroelectric, and field-induced strain response properties of (Mg1/3Nb2/3)4+ complex-ion modified Bi0.5(Na0.82K0.18)0.5TiO3 lead-free ceramics[J]. Journal of Alloys and Compounds, 2018, 743: 73-82. [12] PANG S J, YANG L, QIN J Y, et al. Low electric field-induced strain and large improvement in energy density of (Lu0.5Nb0.5)4+ complex-ions doped BNT-BT ceramics[J]. Applied Physics A, 2019, 125(2): 1-12. [13] YANG L, ZHOU C R, ZENG W D, et al. Unique high temperature polarization stability state in Bi0.5Na0.5TiO3-BaTiO3 system at the morphotropic phase boundary[J]. Physica Status Solidi, 2015, 212(8): 1785-1788. [14] ZENG J T, ZHAO K Y, SHI X, et al. Large strain induced by the alignment of defect dipoles in (Bi3+, Fe3+) co-doped Pb(Zr,Ti)O3 ceramics[J]. Scripta Materialia, 2018, 142: 20-22. [15] FENG Y, LI W L, XU D, et al. Defect engineering of lead-free piezoelectrics with high piezoelectric properties and temperature-stability[J]. ACS Applied Materials & Interfaces, 2016, 8(14): 9231-9241. [16] FENG Y, WU J G, CHI Q G, et al. Defects and aliovalent doping engineering in electroceramics[J]. Chemical Reviews, 2020, 120(3): 1710-1787. [17] WEI Q M, ZHU M K, ZHENG M P, et al. Giant strain of 0.65% obtained in B-site complex cations (Zn1/3Nb2/3)4+-modified BNT-7BT ceramics[J]. Journal of Alloys and Compounds, 2019, 782: 611-618. [18] OBILOR U, PASCUAL-GONZALEZ C, MURAKAMI S, et al. Study of the temperature dependence of the giant electric field-induced strain in Nb-doped BNT-BT-BKT piezoceramics[J]. Materials Research Bulletin, 2018, 97: 385-392. [19] XIA X, JIANG X P, CHEN C, et al. Effects of Cr2O3 doping on the microstructure and electrical properties of (Ba,Ca)(Zr,Ti)O3 lead-free ceramics[J]. Frontiers of Materials Science, 2016, 10(2): 203-210. [20] BENEDEK N A, FENNIE C J. Why are there so few perovskite ferroelectrics?[J]. The Journal of Physical Chemistry C, 2013, 117(26): 13339-13349. [21] DANIELS J E, JO W, RÖDEL J, et al. Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: case study in a 93%(Bi0.5Na0.5)TiO3-7%BaTiO3 piezoelectric ceramic[J]. Applied Physics Letters, 2009, 95(3): 032904. [22] KARTHIK T, RAYAPROL S, SIRUGURI V, et al. Origin of enhanced piezoelectric properties revealed through electric field driven studies in 0.94(Na0.5Bi0.5TiO3)-0.06(Ba0.85Ca0.15Ti0.9Zr0.1O3) ceramics[J]. Journal of Applied Physics, 2020, 127(13): 134102. [23] PETZELT J, KAMBA S, FÁBRY J, et al. Infrared, Raman and high-frequency dielectric spectroscopy and the phase transitions in Na1/2Bi1/2TiO3[J]. Journal of Physics: Condensed Matter, 2004, 16(15): 2719-2731. [24] SINY I G, HUSSON E, BENY J M, et al. Raman scattering in the relaxor-type ferroelectric Na1/2Bi1/2TiO3[J]. Ferroelectrics, 2000, 248(1): 57-78. [25] SAÏD S, MARCHET P, MERLE-MÉJEAN T, et al. Raman spectroscopy study of the Na0.5Bi0.5TiO3-PbTiO3 system[J]. Materials Letters, 2004, 58(9): 1405-1409. [26] ZANNEN M, LAHMAR A, DIETZE M, et al. Structural, optical, and electrical properties of Nd-doped Na0.5Bi0.5TiO3[J]. Materials Chemistry and Physics, 2012, 134(2/3): 829-833. [27] ZANNEN M, KHEMAKHEM H, KABADOU A, et al. Structural, Raman and electrical studies of 2 at.% Dy-doped NBT[J]. Journal of Alloys and Compounds, 2013, 555: 56-61. [28] ZHANG H B, XU P W, PATTERSON E, et al. Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics[J]. Journal of the European Ceramic Society, 2015, 35(9): 2501-2512. [29] KARTHIK T, ASTHANA S. Enhanced mechanical and ferroelectric properties through grain size refinement in site specific substituted lead free Na0.5-xKxBi0.5TiO3 (x=0~0.10) ceramics[J]. Materials Letters, 2017, 190: 273-275. [30] VERMA R, ROUT S K. Frequency-dependent Ferro-antiferro phase transition and internal bias field influenced piezoelectric response of donor and acceptor doped bismuth sodium titanate ceramics[J]. Journal of Applied Physics, 2019, 126(9): 094103. [31] HAN H S, JO W, RÖDEL J, et al. Coexistence of ergodicity and nonergodicity in LaFeO3-modified Bi1/2(Na0.78K0.22)1/2TiO3 relaxors[J]. Journal of Physics Condensed Matter, 2012, 24(36): 365901. |