[1] SEBASTIAN M T. Pseudo-tungsten bronze-type dielectric materials[M]. Dielectric Materials for Wireless Communication. Amsterdam: Elsevier, 2008: 109-159. [2] MAKIMOTO M, YAMASHITA S. Microwave resonators and filters for wireless communication[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. [3] CHEN Y B. New dielectric material system of Nd(Mg1/2Ti1/2)O3-CaTiO3 with ZnO addition at microwave frequencies[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 781-784. [4] ZHANG J, ZUO R Z. Effects of Zr substitution on the microstructure and microwave dielectric properties of Li2Zn(Ti1-xZrx)3O8 ceramics[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(11): 9219-9224. [5] GEORGE S, SEBASTIAN M T. Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A=Mg, Zn) ceramics[J]. Journal of the American Ceramic Society, 2010, 93(8): 2164-2166. [6] GEORGE S, ANJANA P S, DEEPU V N, et al. Low-temperature sintering and microwave dielectric properties of Li2MgSiO4 ceramics[J]. Journal of the American Ceramic Society, 2009, 92(6): 1244-1249. [7] 周 斌.Li2ZnTi3O8陶瓷的制备及微波介电性能的研究[D].南京:南京航空航天大学,2013. ZHOU B. Research on the preparation and microwave dielectric properties of the Li2ZnTi3O8 ceramics[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese). [8] 李玉平,高朋召,刘荣正,等.(Zr0.8Sn0.2)TiO4(ZST)微波介质陶瓷微波烧成工艺研究[J].陶瓷学报,2007,28(3):199-204. LI Y P, GAO P Z, LIU R Z, et al. Study of microwave sintering process of (Zr1-xSnx)TiO4 (ZST) microwave dielectric ceramics[J]. Journal of Ceramics, 2007, 28(3): 199-204 (in Chinese). [9] TAJIK Z, SAYYADI-SHAHRAKI A, TAHERI-NASSAJ E, et al. Effect of synthesis and sintering technique on the long-range 1∶3 cation ordering and microwave dielectric loss of Li2ZnTi3O8 ceramics[J]. Ceramics International, 2020, 46(13): 20905-20913. [10] DAS S, MUKHOPADHYAY A K, DATTA S, et al. Prospects of microwave processing: an overview[J]. Bulletin of Materials Science, 2009, 32(1): 1-13. [11] 葛 雷,杨 建,丘 泰.六方氮化硼的制备方法研究进展[J].电子元件与材料,2008,27(6):22-25+29. GE L, YANG J, QIU T. Study progress of preparation methods of hexagonal boron nitride[J]. Electronic Components and Materials, 2008, 27(6): 22-25+29 (in Chinese). [12] BARI M, TAHERI-NASSAJ E, TAGHIPOUR-ARMAKI H. Phase evolution, microstructure, and microwave dielectric properties of reaction-sintered Li2ZnTi3O8 ceramic obtained using nanosized TiO2 reagent[J]. Journal of Electronic Materials, 2015, 44(10): 3670-3676. [13] 陈 波.氯化硅基陶瓷制品的生产工艺与应用前景综述[J].现代技术陶瓷,2002,23(2):28-30. CHEN B. Production technology for Si3N4-based ceramic products and their application prospect[J]. Advanced Ceramics, 2002, 23(2): 28-30 (in Chinese). [14] TSAI W C, LIOU Y H, LIOU Y C. Microwave dielectric properties of MgAl2O4-CoAl2O4 spinel compounds prepared by reaction-sintering process[J]. Materials Science and Engineering: B, 2012, 177(13): 1133-1137. [15] 刘志国. 特种陶瓷烧结技术[J]. 佛山陶瓷, 2002, 12(9): 37-38. LIU Z G. Sintering technology of special ceramic[J]. Foshan Ceramics, 2002, 12(9): 37-38 (in Chinese). [16] AGRAWAL D K. Microwave processing of ceramics[J]. Current Opinion in Solid State and Materials Science, 1998, 3(5): 480-485. [17] HE M, ZHANG H W. Low-temperature firing and microwave properties of TiO2 modified Li2ZnTi3O8 ceramics doped with B2O3[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(9): 3303-3308. [18] LU X P, ZHENG Y, ZHOU B, et al. Microwave dielectric properties of Li2ZnTi3O8 ceramics doped with Bi2O3[J]. Ceramics International, 2013, 39(8): 9829-9833. [19] LU X P, ZHENG Y, ZHOU B, et al. Microwave dielectric properties of Li2ZnTi3O8 ceramics doped with ZnO-B2O3-SiO2 glass[J]. Materials Letters, 2013, 91: 217-219. [20] LU X P, ZHENG Y, DONG Z W, et al. Low temperature sintering and microwave dielectric properties of Li2ZnTi3O8 ceramics doped with ZnO-La2O3-B2O3 glass[J]. Ceramics International, 2014, 40(5): 7087-7092. [21] REN H S, HAO L, PENG H Y, et al. Investigation on low-temperature sinterable behavior and tunable dielectric properties of BLMT glass-Li2ZnTi3O8 composite ceramics[J]. Journal of the European Ceramic Society, 2018, 38(10): 3498-3504. [22] ARUN S, SEBASTIAN M T, SURENDRAN K P. Li2ZnTi3O8 based high κ LTCC tapes for improved thermal management in hybrid circuit applications[J]. Ceramics International, 2017, 43(7): 5509-5516. [23] 童志义.低温共烧陶瓷技术现状与趋势[J].电子工业专用设备,2008,37(11):1-9. TONG Z Y. The technique status and trend of LTCC[J]. Equipment for Electronic Products Manufacturing, 2008, 37(11): 1-9 (in Chinese). [24] 史可顺.电子陶瓷和器件的低温共烧技术[J].硅酸盐学报,2007,35(S1):108-116. SHI K S. Low temperature cofiring technique for electronic ceramics and device[J]. Journal of the Chinese Ceramic Society, 2007, 35(S1): 108-116 (in Chinese). [25] VERMA R, DAYA K S. Effect of forbidden bands of electromagnetic bandgap engineered ground plane on the response of half wave length linear microwave resonator[J]. Journal of Applied Physics, 2011, 109(8): 084505. [26] KUME S, YASUOKA M, OMURA N, et al. Effects of annealing on dielectric loss and microstructure of aluminum nitride ceramics[J]. Journal of the American Ceramic Society, 2005, 88(11): 3229-3231. [27] LV X, WANG Z, CHEN X M. Structure and dielectric characteristics of Ca(Fe1/2Ta1/2)O3 complex perovskite ceramics[J]. Ceramics International, 2011, 37(3): 1033-1037. [28] ADAMCZYK M, UJMA Z, SZYMCZAK L, et al. Influence of post-sintering annealing on relaxor behaviour of (Pb0.75Ba0.25)(Zr0.70Ti0.30)O3 ceramics[J]. Ceramics International, 2005, 31(6): 791-794. [29] HUMPHREYS F J, HATHERLY M. Recrystallization textures[M]. Recrystallization and Related Annealing Phenomena. Amsterdam: Elsevier, 1995: 327-362. [30] TAGHIPOUR-ARMAKI H, TAHERI-NASSAJ E, BARI M. Phase analysis and improvement of quality factor of Li2ZnTi3O8 ceramics by annealing treatment[J]. Journal of Alloys and Compounds, 2013, 581: 757-761. [31] TAGHIPOUR-ARMAKI H, TAHERI-NASSAJ E, BARI M. Effect of annealing time on structural and microwave dielectric characteristics of Li2ZnTi3O8 ceramics[J]. Journal of Materials Research, 2015, 30(10): 1619-1628. [32] FANG L, CHU D J, ZHOU H F, et al. Microwave dielectric properties of temperature stable Li2ZnxCo1-xTi3O8 ceramics[J]. Journal of Alloys and Compounds, 2011, 509(35): 8840-8844. [33] SINGH S K, KIRAN S R, MURTHY V R K. Structural, Raman spectroscopic and microwave dielectric studies on spinel Li2Zn(1-x)NixTi3O8 compounds[J]. Materials Chemistry and Physics, 2013, 141(2/3): 822-827. [34] XIAO K, TANG Y, TIAN Y F, et al. Enhancement of the cation order and the microwave dielectric properties of Li2ZnTi3O8 through composition modulation[J]. Journal of the European Ceramic Society, 2019, 39(10): 3064-3069. [35] ZHU J H, XIAO Q, ZHANG T, et al. Effects of dopants on the reliability of low temperature sintered Li2ZnTi3O8 ceramics[J]. Ceramics International, 2021, 47(1): 238-242. [36] ZHANG P, ZHAO Y G. High-Q microwave dielectric materials of Li2ZnTi3O8 ceramics with SnO2 additive[J]. Ceramics International, 2016, 42(2): 2882-2886. [37] REN J Q, BI K, FU X L, et al. Microstructure and microwave dielectric properties of Al2O3 added Li2ZnTi3O8 ceramics[J]. Ceramics International, 2018, 44(8): 8928-8933. [38] BARI M, TAHERI-NASSAJ E, TAGHIPOUR-ARMAKI H. Role of nano- and micron-sized particles of TiO2 additive on microwave dielectric properties of Li2ZnTi3O8-4wt% TiO2 ceramics[J]. Journal of the American Ceramic Society, 2013, 96(12): 3737-3741. |