BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2020, Vol. 39 ›› Issue (12): 3743-3752.
Previous Articles Next Articles
LI Shicai, YU Yong, JIN Zuquan
Published:
2021-02-01
[1] 周继凯,何 旭,王泽宇,等.海水海砂混凝土与潜在危害研究进展[J].科学技术与工程,2018,18(24):179-187. [2] 王圣洁,刘锡清,戴勤奋,等.中国海砂资源分布特征及找矿方向[J].海洋地质与第四纪地质,2003(3):83-89. [3] Nishida T, Otsuki N, Ohara H, et al. Some considerations for applicability of seawater as mixing water in concrete[J]. Journal of Materials in Civil Engineering, 2015, 27(7): 1-7. [4] 洪乃丰.海砂腐蚀与“海砂屋”危害[J].工业建筑,2004,34(11):65-67. [5] 施养杭,王丹芳,吴泽进.海砂混凝土及其耐久性保护[J].工程力学,2010,27(s2):212-216. [6] 傅建彬.海砂建筑材料资源化几个关键技术的研究[D].武汉:武汉大学,2005. [7] Rao S, Reddy R, Bhaskar V. Influence of neutral salts (NaCl and KCl) in water on properties of natural admixture cements[J]. Engineering Science and Technology: An International Journal, 2012, 2(4): 745-751. [8] Reddy V V, Ramana N V, Gnaneswar K, et al. Effect of magnesium chloride (MgCl2) on ordinary Portland cement concrete[J]. Indian Journal of Science and Technology, 2011, 4(6): 643-645. [9] Thomas J J, Allen A J, Jennings H M. Hydration kinetics and microstructure development of normal and CaCl2-accelerated tricalcium silicate pastes[J]. The Journal of Physical Chemistry C, 2009, 113(46): 19836-19844. [10] Wegian F M. Effect of seawater for mixing and curing on structural concrete[J].The IES Journal Part A: Civil and Structural Engineering, 2010, 3(4): 235-243. [11] de Weerdt K, Orsáková D, Geiker M R. The impact of sulphate and magnesium on chloride binding in Portland cement paste[J]. Cement and Concrete Research, 2014, 65: 30-40. [12] Liu W, Cui H Z, Dong Z J, et al. Carbonation of concrete made with dredged marine sand and its effect on chloride binding[J]. Construction and Building Materials, 2016, 120: 1-9. [13] Hasdemir S, Tugrul A, Yilmaz M. The effect of natural sand composition on concrete strength[J]. Construction and Building Materials, 2016, 112: 940-948. [14] 肖建庄,廖清香,张青天,等.海水海砂再生混凝土与玻璃纤维增强塑料筋黏结性能[J].同济大学学报(自然科学版),2018,46(7):884-890+971. [15] Etxeberria M, Gonzalez-Corominas A, Pardo P. Influence of seawater and blast furnace cement employment on recycled aggregate concretes' properties[J]. Construction and Building Materials, 2016, 115: 496-505. [16] Kaushik S K, Islam S. Suitability of sea water for mixing structural concrete exposed to a marine environment[J]. Cement and Concrete Composites, 1995, 17(3): 177-185. [17] Yang E I, Kim M Y, Park H G, et al. Effect of partial replacement of sand with dry oyster shell on the long-term performance of concrete[J]. Construction and Building Materials, 2010, 24(5): 758-765. [18] Limeira J, Etxeberria M, Agullo L, et al. Mechanical and durability properties of concrete made with dredged marine sand[J]. Construction and Building Materials, 2011, 25(11): 4165-4174. [19] Safi B, Saidi M, Daoui A, et al. The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM)[J]. Construction and Building Materials, 2015, 78: 430-438. [20] 宁 博,欧阳东,温喜廉.利用海砂制备高性能混凝土试验研究[J].混凝土,2012(1):88-90+93. [21] 邢 丽,薛瑞丰,曹 喜.海砂海水混凝土性能研究[J].混凝土,2015(11):137-141. [22] 陈人云.海水海砂混凝土力学性能研究[J].广东建材,2017,33(4):26-28. [23] Younis A, Ebead U, Suraneni P, et al. Fresh and hardened properties of seawater-mixed concrete[J]. Construction and Building Materials, 2018, 190(30): 276-286. [24] 刘 伟,谢友均,董必钦,等.海砂特性及海砂混凝土力学性能的研究[J].硅酸盐通报,2014,33(1):15-22. [25] 杨明奥.论海砂对混凝土质量的影响[J].科技创新与应用,2012(22):206-207. [26] 熊卫锋,杨晓峰,段文锋,等.可溶性氯盐对掺不同结构聚羧酸减水剂水泥浆体流变性的影响[J].新型建筑材料,2011,38(11):90-93. [27] 万 煜,王 智,郭清春,等.硫酸盐对聚羧酸减水剂分散性能的影响[J].硅酸盐通报,2011,30(3):634-638. [28] Han S, Plank J. Mechanistic study on the effect of sulfate ions on polycarboxylate superplasticisers in cement[J]. Advances in Cement Research, 2013, 25(4): 200-207. [29] 刘娟红,高 霞,纪洪广.无机盐对硫酸盐与聚羧酸减水剂相互作用的影响[J].沈阳建筑大学学报(自然科学版),2013,29(4):687-692+697. [30] Otsuki N, Saito T, Tadokoro Y. Possibility of sea water as mixing water in concrete[J]. Journal of Civil Engineering and Architecture, 2012, 6(11): 1273-1279. [31] Etxeberria M, Fernandez J M, Limeira J. Secondary aggregates and seawater employment for sustainable concrete dyke blocks production: case study[J]. Construction and Building Materials, 2016, 113: 586-595. [32] Shayan A, Xu A, Chirgwin G, et al. Effects of seawater on AAR expansion of concrete[J]. Cement and Concrete Research, 2010, 40(4): 563-568. [33] Guo Q Y, Chen L, Zhao H J, et al. The Effect of mixing and curing sea water on concrete strength at different ages[J]. Matec Web of Conferences, 2018, 142: 02004. [34] Xiao J Z, Qiang C B, Nanni A, et al. Use of sea-sand and seawater in concrete construction: current status and future opportunities[J]. Construction and Building Materials, 2017, 155: 1101-1111. [35] 李田雨,张玉梅,刘小艳,等.海水海砂高性能海工混凝土力学及早期工作性研究[J].混凝土,2019(11):1-5. [36] 秦 斌.海水海砂混凝土基本力学性能研究[J].混凝土,2019(2):90-91. [37] Guo M H, Hu B, Xing F, et al. Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis[J]. Construction and Building Materials, 2020, 234: 117339. [38] Çaatay I. H. Experimental evaluation of buildings damaged in recent earthquakes in Turkey[J]. Engineering Failure Analysis, 2005, 12(3): 440-452. [39] Ratnayake N P, Puswewala U G A, Chaminda S P, et al. Evaluation of the potential of sea sand as an alternative to river sand for concrete production in Sri Lanka[J]. Journal of Geological Society of Sri Lanka, 2014, 16: 109-117. [40] Girish C G, Tensing D, Priya K L. Dredged offshore sand as a replacement for fine aggregate in concrete[J]. International Journal of Engineering Sciences and Emerging Technologies, 2015, 8(3): 88-95. [41] Naidu G D R, Prasad A R, Ramlal S. Effect of sea water on strength of concrete made by river sand and sea sand (Article)[J]. International Journal of Recent Technology and Engineering, 2019, 8(3): 2999-3002. [42] Li Y T, Zhou L, Jiang M, et al. Experimental study on mechanical property of concrete based on seawater and sea sand[J]. Advanced Materials Research, 2013, 641/642(1): 574-577. [43] Olutoge F A, Modupeola A G. The effect of seawater on shrinkage properties of concrete[J]. International Journal of Research in Engineering and Technology, 2014, 2(10): 1-12. [44] 姚惠红.海砂混凝土的力学及耐久性能研究[D].青岛:青岛理工大学,2011. [45] Mohammed T U, Hamada H. Relationship between free chloride and total chloride contents in concrete[J]. Cement and Concrete Research, 2003, 33(9): 1487-1490. [46] Ipavec A, Vuk T, Gabrovsek R, et al. Chloride binding into hydrated blended cements: the influence of limestone and alkalinity [J]. Cement and Concrete Research, 2013, 48: 74-85. [47] 王小刚,史才军,何富强,等.氯离子结合及其对水泥基材料微观结构的影响[J].硅酸盐学报,2013,41(2):187-198. [48] Yang Z Q, Gao Y, Mu S, et al. Improving the chloride binding capacity of cement paste by adding nano-Al2O3[J]. Construction and Building Materials, 2019, 195: 415-422. [49] 刘 军,董必钦,邢 锋,等.海砂氯离子与水泥胶体结合的模拟实验与结合机理[J].硅酸盐学报,2009,37(5):862-866+876. [50] 刘 军,邢 锋,董必钦,等.模拟海砂混凝土中氯离子扩散研究[J].混凝土,2008(3):33-35. [51] 刘 军,邢 锋,董必钦,等.海砂型氯离子在混凝土中扩散的微观形貌分析[J].混凝土与水泥制品,2007(6):15-17. [52] 邢 锋,刘 军,董必钦,等.海砂型氯离子与水泥胶体的结合和机理[J].东南大学学报(自然科学版),2006,36(s2):167-172. [53] 董必钦,刘 伟,马红岩,等.海砂砂浆水化过程的电化学阻抗谱研究[J].建筑材料学报,2013,16(2):306-309+320. [54] Glass G K, Buenfeld N R. The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete[J]. Corrosion Science, 2000, 42(2): 329-344. [55] Ramachandran V S. Possible states of chloride in the hydration of tricalcium silicate in the presence of calcium chloride [J]. Matériaux et Construction, 1971, 4(1): 3-12. [56] Tang L P, Nilsson L O. Chloride binding capacity and binding isotherms of OPC pastes and mortars [J]. Cement and Concrete Research, 1993, 23(2): 247-253. [57] Cheewaket T, Jaturapitakkul C, Chalee W. Long term performance of chloride binding capacity in fly ash concrete in a marine environment[J]. Construction and Building Materials, 2010, 24(8): 1352-1357. [58] Luo R, Cai Y B, Wang C Y, et al. Study of chloride binding and diffusion in GGBS concrete[J]. Cement and Concrete Research, 2003, 33(1): 1-7. [59] Zhu Z Y, Chu H Q, Guo M Z, et al. Effect of silica fume and fly ash on the stability of bound chlorides in cement mortar during electrochemical chloride extraction[J]. Construction and Building Materials, 2020, 256: 119481. [60] Feng L, Zhao P, Wang Z J, et al. Improvement of mechanical properties and chloride ion penetration resistance of cement pastes with the addition of pre-dispersed silica fume[J]. Construction and Building Materials, 2018, 182: 483-492. [61] Lambert P, Page C L, Short N R. Pore solution chemistry of the hydrated system tricalcium silicate/sodium chloride/water[J]. Cement and Concrete Research, 1985, 15(4): 675-680. [62] Shi Z G, Shui Z H, Li Q, et al. Combined effect of metakaolin and sea water on performance and microstructures of concrete[J]. Construction and Building Materials, 2015, 74: 57-64. [63] Li Q, Geng H N, Huang Y, et al. Chloride resistance of concrete with metakaolin addition and seawater mixing: a comparative study[J]. Construction and Building Materials, 2015, 101: 184-192. [64] Yi C, Ma H Q, Zhu H G, et al. Study on chloride binding capability of coal gangue based cementitious materials[J]. Construction and Building Materials, 2018, 167: 649-656. [65] 李薛忠.基于钢筋锈蚀的海工混凝土结构耐久性能研究[D].镇江:江苏科技大学,2019. [66] Xia J, Cheng X, Liu Q F, et al. Effect of the stirrup on the transport of chloride ions during electrochemical chloride removal in concrete structures[J]. Construction and Building Materials, 2020, 250: 118898. [67] 苏 卿,陈艾荣,赵铁军.淡化海砂混凝土中钢筋的锈蚀特征[J].新型建筑材料,2012,39(8):48-52+55. [68] 马红岩,邢 锋,董必钦,等.海砂混凝土中钢筋锈蚀特性的电化学表征研究[J].混凝土,2007(7):20-23. [69] Wang G, Wu Q, Li X Z, et al. Microscopic analysis of steel corrosion products in seawater and sea-sand concrete[J]. Materials, 2019, 12(20): 3330. [70] Wu Q, Li X Z, Xu J, et al. Size distribution model and development characteristics of corrosion pits in concrete under two curing methods[J]. Materials, 2019, 12(11): 1846. [71] Dias W P S, Seneviratne G A P S N, Nanayakkara S M A. Offshore sand for reinforced concrete [J]. Construction and Building Materials, 2008, 22(7): 1377-1384. [72] 宋旭艳,姜正平,韩静云,等.海砂混凝土中钢筋锈蚀情况研究[J].混凝土与水泥制品,2019(9):19-23. [73] Mohammed T U, Hamada H, Yamaji T. Performance of seawater-mixed concrete in the tidal environment [J]. Cement and Concrete Research, 2004, 34(4): 593-601. [74] 赵文成,潭进财,杨景鼎.海砂用于混凝土构造物耐久性研究及使用管理[J].东南大学学报(自然科学版),2006,36(s2):160-166. [75] Xu C X, Ou Z W, Zhou J L, et al. Investigation on protectional ability on steel bar of compound corrosion inhibitor applied in seawater-and-sea sand concrete [J]. Applied Mechanics and Materials, 2011, 71-78: 864-870. [76] 周俊龙,欧忠文,江世永,等.掺阻锈剂掺合料海水海砂混凝土护筋性探讨[J].建筑材料学报,2012,15(1):69-74. [77] 张 航,陈国福,宋开伟,等.适用于海水海砂混凝土阻锈剂的作用机理[J].材料导报,2014,28(20):116-121. [78] 杨长辉,张 航,欧忠文,等.适用于海水海砂混凝土的阻锈剂[J].混凝土,2010(11):69-72. [79] Pan C G, Li X, Mao J H. The effect of a corrosion inhibitor on the rehabilitation of reinforced concrete containing sea sand and seawater[J]. Materials, 2020, 13(6): 1480. [80] Li T Y, Liu X Y, Zhang Y M, et al. Preparation of sea water sea sand high performance concrete (SHPC) and serving performance study in marine environment[J]. Construction and Building Materials, 2020, 254: 119114. [81] Teng J G, Xiang Y, Yu T, et al. Development and mechanical behaviour of ultra-high-performance seawater sea-sand concrete[J]. Advances in Structural Engineering, 2019, 22(14): 3100-3120. [82] Yin H G, Li Y, Lv H L, et al. Durability of sea-sand containing concrete: effects of chloride ion penetration[J]. Mining Science and Technology, 2011, 21(1): 123-127. [83] Li H, Farzadnia N, Shi C J. The role of seawater in interaction of slag and silica fume with cement in low water-to-binder ratio pastes at the early age of hydration[J]. Construction and Building Materials, 2018, 185: 508-518. [84] 张 航.适用于海水海砂混凝土的阻锈剂研究[D].重庆:重庆大学,2010. [85] Guo F, Al-Saadi S, Singh Raman R K, et al. Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment[J]. Corrosion science, 2018, 141: 1-13. [86] Li Y L, Zhao X L, Raman R K S. Mechanical properties of seawater and sea sand concrete-filled FRP tubes in artificial seawater[J]. Construction and Building Materials, 2018, 191(10): 977-993. [87] Wang Z K, Zhao X L, Xian G, et al. Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment[J]. Construction and Building Materials, 2017, 139: 467-489. |
[1] | LI Nan, XIE Zhipeng, YI Zhongzhou, ZHAI Fengrui. Research and Application Progress of Ce-Y(Ca)-TZP Ceramics and Ce-TZP/Al2O3 Composite Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3729-3742. |
[2] | YANG Lin, ZHANG Yunsheng, ZHANG Chunxiao. Water Transport and Permeability Coefficient Calculation for Unsaturated Cement-Based Materials Based on X-CT [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3775-3782. |
[3] | LI Xiaoqin, ZHOU Xu, LI Shihua. Effect of Fly Ash Content on Properties of PVA-ECC [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3783-3790. |
[4] | LIU Zhenzheng, XIE Chunlei, WANG Xueying, GUO Liang, WU Yueyue, CHEN Qin, DUAN Ping. Preparation of Rice Husk Ash and Its Effect on Mechanical Properties of Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3881-3888. |
[5] | YANG Lingming, ZHANG Weixiang, ZHOU Shaoqing. Influence of Basalt Fiber on Properties of Traditional Sticky Rice-Lime Mortar and Its Mechanism Analysis [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3924-3931. |
[6] | ZHOU Wentao, LI Jianlin. Preparation and Properties of Graphene/Glass Bulk Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3998-4002. |
[7] | YANG Lei;HE Ting-shu;GAI Guo-sheng;HE Juan;CHEN Chang. Effect of Fiber Properties on Mechanical Properties and Microstructures of Autoclaved Aerated Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(6): 1813-1817. |
[8] | ZHANG Fan;NIU Huan-huan;LI Wen;FAN Bing-bing;ZHANG Rui. Investigation on the Manufacturing Process and Properties of Ceramic Wall Brick and Floor Tile with Fly Ash [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(6): 1941-1945. |
[9] | CAI Run-ze;MAN Du-la;CHEN Si-han. Experimental Study on Cementing Material of Sand-based Permeable Concrete Pavement Brick [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(6): 1995-2001. |
[10] | ZHANG Chun-mei;CHENG Xiao-wei;YANG Yong-sheng;GUO Xiao-yang;CHEN Zu-wei. Synthesis and Performance Study of Self-repairing Microcapsules for Micro-cracks of Oil-well Cement Matrix [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(6): 2035-2041. |
[11] | QIAN Bo;HU Jian-chun;QI Ming-qiang;ZHENG Fa-ping;ZHAO Jie. Experimental Research on Performance of C30 Concrete with Aggregate of High Titanium Heavy Slag in Xichang City [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(6): 2062-2066. |
[12] | LI Xiang-guo;MING Tian;LIU Zhuo-lin;REN Zhao-feng;JIANG Wen-guang. Research on Durability and Mechanical Properties of Carbon Nanotube Cement Matrix Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(5): 1497-1502. |
[13] | LI Ming;ZHANG Yan;WANG Yan-liang;LI Yong;CHEN E-qiu;YIN Xiao-peng. Research on Carbonation Depth and Mechanical Properties of Concrete of Transmission Lines in Arid Areas [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(5): 1556-1562. |
[14] | HUANG Sai-jia. Mechanical Properties of Hydrated Calcium Silicate Simulated by Molecular Dynamics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(5): 1687-1692. |
[15] | HUO Jun-fang;WEI Jian;LI Chen-xia;HOU Yong-li. Experimental Study on Frost Resistance of Recycled Concrete with Equivalent Volume Mortar Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(5): 1776-1780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||