BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2020, Vol. 39 ›› Issue (12): 3729-3742.
Previous Articles Next Articles
LI Nan1, XIE Zhipeng2, YI Zhongzhou1, ZHAI Fengrui1
Published:
2021-02-01
CLC Number:
LI Nan, XIE Zhipeng, YI Zhongzhou, ZHAI Fengrui. Research and Application Progress of Ce-Y(Ca)-TZP Ceramics and Ce-TZP/Al2O3 Composite Ceramics[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3729-3742.
[1] Theunissen G S A M, Winnubst A J A, Burggraaf A J. Effect of dopants on the sintering behaviour and stability of tetragonal zirconia ceramics[J]. Journal of the European Ceramic Society, 1992, 9(4): 251-263. [2] Boutz M M R, Winnubst A J A, Burggraaf A J. Yttria-ceria stabilized tetragonal zirconia polycrystals: sintering, grain growth and grain boundary segregation[J]. Journal of the European Ceramic Society, 1994, 13(2): 89-102. [3] Hwang S L, Chen I W. Grain size control of tetragonal zirconia polycrystals using space charge concept[J]. Journal of the American Ceramic Society, 1990, 73(11): 3269-3277. [4] Park J H, Moon S W. Stability and sinterability of tetragonal zirconia polycrystals costabilized by CeO2 and various oxides[J]. Journal of Materials Science Letters, 1992, 11(15): 1046-1048. [5] Takemura A, Nakahira A, Sekino T, et al. Effects of oxide doping on microstructure and mechanical properties of Ce-TZP[J]. Journal of the Society of Materials Science, Japan, 1994, 43(489): 606-612. [6] Allemann J A, Michel B, Märki H B, et al. Grain growth of differently doped zirconia[J]. Journal of the European Ceramic Society, 1995, 15(10): 951-958. [7] Chen I W. Mobility control of ceramic grain boundaries and interfaces[J]. Materials Science and Engineering: A, 1993, 166(1/2): 51-58. [8] Galakhov A V, Fomina G A, Il′icheva A A, et al. Mechanical properties of ZrO2+121CeO2 ceramics with additives of CaO, Y2O3, and Nb2O5[J]. Refractories, 1994, 35(1): 46-50. [9] Turon-Vinas M, Zhang F, Vleugels J, et al. Effect of calcia co-doping on ceria-stabilized zirconia[J]. Journal of the European Ceramic Society, 2018, 38(6): 2621-2631. [10] 樊旭东,谢志鹏,黄 勇,等.Y,Ce-TZP陶瓷的微波快速烧结[J].陶瓷学报,1996,17(4):3-9. [11] Li L, van der Biest O, Wang P L, et al. Estimation of the phase diagram for the ZrO2-Y2O3-CeO2 system[J]. Journal of the European Ceramic Society, 2001, 21(16): 2903-2910. [12] Lin J D, Duh J G, Lo C L. Mechanical properties and resistance to hydrothermal aging of ceria- and yttria-doped tetragonal zirconia ceramics[J]. Materials Chemistry and Physics, 2003, 77(3): 808-818. [13] Hernandez M T, Jurado J R, Duran P, et al. Subeutectoid degradation of yttria-stabilized tetragonal zirconia polycrystal and ceria-doped yttria-stabilized tetragonal zirconia polycrystal ceramics[J]. Journal of the American Ceramic Society, 1991, 74(6): 1254-1258. [14] Duh J G, Dai H T, Chiou B S. Sintering, microstructure, hardness, and fracture toughness behavior of Y2O3-CeO2-ZrO2[J]. Journal of the American Ceramic Society, 1988, 71(10): 813-819. [15] Duh J G, Wan J U. Developments in highly toughened CeO2-Y2O3-ZrO2 ceramic system[J]. Journal of Materials Science, 1992, 27(22): 6197-6203. [16] Zhao Z, Liu C, Northwood D O. The effect of surface GeO2-doping and CeO2-doping on the degradation of 2Y-TZP ceramic on annealing in water at 200 ℃[J]. Materials & Design, 1999, 20(6): 297-301. [17] Turon-Vinas M, Roa J J, Marro F G, et al. Mechanical properties of 12Ce-ZrO2/3Y-ZrO2 composites[J]. Ceramics International, 2015, 41(10): 14988-14997. [18] Lin J D, Duh J G. Correlation of mechanical properties and composition in tetragonal CeO2-Y2O3-ZrO2 ceramic system[J]. Materials Chemistry and Physics, 2003, 78(1): 246-252. [19] Sato T, Endo T, Shimada M. Postsintering hot isostatic pressing of ceria-doped tetragonal zirconia/alumina composites in an argon-oxygen gas atmosphere[J]. Journal of the American Ceramic Society, 1989, 72(5): 761-764. [20] Palmero P, Fornabaio M, Montanaro L, et al. Towards long lasting zirconia-based composites for dental implants. Part I: innovative synthesis, microstructural characterization and in vitro stability[J]. Biomaterials, 2015, 50(1): 38-46. [21] Reveron H, Fornabaio M, Palmero P, et al. Towards long lasting zirconia-based composites for dental implants: transformation induced plasticity and its consequence on ceramic reliability[J]. Acta Biomaterialia, 2017, 48: 423-432. [22] Cutler R A, Mayhew R J, Prettyman K M, et al. High-toughness Ce-TZP/Al2O3 ceramics with improved hardness and strength[J]. Journal of the American Ceramic Society, 1991, 74(1): 179-186. [23] Readey M, Mccallen C. Microstructure, flaw tolerance, and reliability of Ce-TZP and Y-TZP ceramics[J]. Journal of the American Ceramic Society, 1995, 78(10): 2769-2776. [24] Tsai J F, Chon U, Ramachandran N, et al. Transformation plasticity and toughening in CeO2-partially-stabilized zirconia-alumina (Ce-TZP/Al2O3) composites doped with MnO[J]. Journal of the American Ceramic Society, 1992, 75(5): 1229-1238. [25] Apel E, Ritzberger C, Courtois N, et al. Introduction to a tough, strong and stable Ce-TZP/MgAl2O4 composite for biomedical applications[J]. Journal of the European Ceramic Society, 2012, 32(11): 2697-2703. [26] Kern F. A comparison of microstructure and mechanical properties of 12Ce-TZP reinforced with alumina and in situ formed strontium-or lanthanum hexaaluminate precipitates[J]. Journal of the European Ceramic Society, 2014, 34(2): 413-423. [27] Burger W, Richter H G. High strength and toughness alumina matrix composites by transformation toughening and ‘in situ’ platelet reinforcement (ZPTA)-the new generation of bioceramics[J]. Key Engineering Materials, 2001, 192/193/194/195: 545-548. [28] Tsai J F, Yu C S, Shetty D K. Fatigue crack propagation in ceria-partially-stabilized zirconia (Ce-TZP)-alumina composites[J]. Journal of the American Ceramic Society, 1990, 73(10): 2992-3001. [29] Yu C S, Shetty D K, Shaw M C, et al. Transformation zone shape effects on crack shielding in ceria-partially-stabilized zirconia (Ce-TZP)-alumina composites[J]. Journal of the American Ceramic Society, 1992, 75(11): 2991-2994. [30] Nawa M, Bamba N, Sekino T, et al. The effect of TiO2 addition on strengthening and toughening in intragranular type of 12Ce-TZP/Al2O3 nanocomposites[J]. Journal of the European Ceramic Society, 1998, 18(3): 209-219. [31] Nawa M, Nakamoto S, Sekino T, et al. Tough and strong Ce-TZP/Alumina nanocomposites doped with titania[J]. Ceramics International, 1998, 24(7): 497-506. [32] Miura M, Hongoh H, Yogo T, et al. Formation of plate-like lanthanum-β-aluminate crystal in Ce-TZP matrix[J]. Journal of Materials Science, 1994, 29(1): 262-268. [33] 李明浩,王雅琨,陈国清,等.高温熔凝法制备Y2O3/Sm2O3双掺杂Al2O3-ZrO2共晶陶瓷的微观组织及力学性能[J].陶瓷学报,2019,40(3):334-341. [34] Maschio S, Pezzotti G, Sbaizero O. Effect of LaNbO4 addition on the mechanical properties of ceria-tetragonal zirconia polycrystal matrices[J]. Journal of the European Ceramic Society, 1998, 18(12): 1779-1785. [35] Yamaguchi T, Sakamoto W, Yogo T, et al. In situ formation of Ce-TZP/Ba hexaaluminate composites[J]. Journal of the Ceramic Society of Japan, 1999, 107(1249): 814-819. [36] Touaiher I, Saâdaoui M, Chevalier J, et al. Fracture behavior of Ce-TZP/alumina/aluminate composites with different amounts of transformation toughening. Influence of the testing methods[J]. Journal of the European Ceramic Society, 2018, 38(4): 1778-1789. [37] Chevalier J, Grandjean S, Kuntz M, et al. On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthroplasty applications[J]. Biomaterials, 2009, 30(29): 5279-5282. [38] Heuer A H. Transformation toughening in ZrO2-containing ceramics[J]. Journal of the American Ceramic Society, 1987, 70(10): 689-698. [39] Munz D. What can we learn from R-curve measurements?[J]. Journal of the American Ceramic Society, 2007, 90(1):1-15. [40] Yu C S, Shetty D K. Transformation yielding, plasticity and crack-growth-resistance (R-curve) behaviour of CeO2-TZP[J]. Journal of Materials Science, 1990, 25(4): 2025-2035. [41] Guo R, Guo D, Chen Y, et al. In situ formation of LaAl11O18 rodlike particles in ZTA ceramics and effect on the mechanical properties[J]. Ceramics International, 2002, 28(7): 699-704. [42] Ori S, Kojima T, Hara T, et al. Fabrication of Ce-TZP/Ba hexaaluminate composites using amorphous precursor of the second phase[J]. Journal of the Ceramic Society of Japan, 2012, 120(1399): 111-115. [43] Lambrigger M. Evaluation of Weibull master curves of zirconia ceramics and zirconia/alumina composites[J]. Journal of Materials Science Letters, 1997, 16(11): 924-926. [44] Chevalier J, Liens A, Reveron H, et al. Forty years after the promise of 《ceramic steel?》: zirconia-based composites with a metal-like mechanical behavior[J]. Journal of the American Ceramic Society, 2020, 103(3): 1482-1513. [45] 孙淑珍,徐晓虹,吴建锋,等.Ce-TZP陶瓷人工关节材料的研究[J].武汉工业大学学报,1997,19(3):4-6. [46] Urano S, Hotta Y, Miyazaki T, et al. Bending properties of Ce-TZP/A nanocomposite clasps for removable partial dentures[J]. The International Journal of Prosthodontics, 2015, 28(2): 191-197. [47] Sawada T, Wagner V, Schille C, et al. Effect of slow-cooling protocol on biaxial flexural strengths of bilayered porcelain-ceria-stabilized zirconia/alumina nanocomposite (Ce-TZP/A) disks[J]. Dental Materials, 2019, 35(2): 270-282. [48] Tanaka K, Tamura J, Kawanabe K, et al. Ce-TZP/Al2O3 nanocomposite as a bearing material in total joint replacement[J]. Journal of Biomedical Materials Research, 2002, 63(3): 262-270. [49] Sawada T, Schille C, Wagner V, et al. Biaxial flexural strength of the bilayered disk composed of ceria-stabilized zirconia/alumina nanocomposite (Ce-TZP/A) and veneering porcelain[J]. Dental Materials, 2018, 34(8): 1199-1210. [50] Fischer J, Stawarczyk B. Compatibility of machined Ce-TZP/Al2O3 nanocomposite and a veneering ceramic[J]. Dental Materials, 2007, 23(12): 1500-1505. [51] Philipp A, Fischer J, Hämmerle C H, et al. Novel ceria-stabilized tetragonal zirconia/alumina nanocomposite as framework material for posterior fixed dental prostheses: preliminary results of a prospective case series at 1 year of function[J]. Quintessence International, 2010, 41(4): 313-319. [52] Tanaka S, Takaba M, Ishiura Y, et al. A 3-year follow-up of ceria-stabilized zirconia/alumina nanocomposite (Ce-TZP/A) frameworks for fixed dental prostheses[J]. Journal of Prosthodontic Research, 2015, 59(1): 55-61. [53] Hagiwara Y, Nakajima K. Application of Ce-TZP/Al2O3 nanocomposite to the framework of an implant-fixed complete dental prosthesis and a complete denture[J]. Journal of Prosthodontic Research, 2016, 60(4): 337-343. [54] Goyos-Ball L, García-Tuñón E, Fernández-García E, et al. Mechanical and biological evaluation of 3D printed 10CeTZP-Al2O3 structures[J]. Journal of the European Ceramic Society, 2017, 37(9): 3151-3158. [55] Tarafder S, Balla V K, Davies N M, et al. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering[J]. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7(8): 631-641. [56] Khalyfa A, Vogt S, Weisser J, et al. Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants[J]. Journal of Materials Science: Materials in Medicine, 2007, 18(5): 909-916. [57] Miranda P, Pajares A, Saiz E, et al. Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting[J]. Journal of Biomedical Materials Research Part A, 2007, 83A(3): 646-655. [58] Farzadi A, Solati-Hashjin M, Asadi-Eydivand M, et al. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering[J]. Plos One, 2014, 9(9): e108252. [59] Zocca A, Colombo P, Gomes C M, et al. Additive manufacturing of ceramics: issues, potentialities, and opportunities[J]. Journal of the American Ceramic Society, 2015, 98(7): 1983-2001. [60] Fielding G A, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds[J]. Dental Materials, 2012, 28(2): 113-122. [61] Kolan K C R, Leu M C, Hilmas G E, et al. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering[J]. Biofabrication, 2011, 3(2): 025004. [62] Chu T M G, Orton D G, Hollister S J, et al. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures[J]. Biomaterials, 2002, 23(5): 1283-1293. [63] Genet M, Houmard M, Eslava S, et al. A two-scale Weibull approach to the failure of porous ceramic structures made by robocasting: possibilities and limits[J]. Journal of the European Ceramic Society, 2013, 33(4): 679-688. [64] Deville S, Saiz E, Tomsia A P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(32): 5480-5489. |
[1] | LI Shicai, YU Yong, JIN Zuquan. Review on Mechanical Properties and Durability of Seawater and Sea-Sand Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3743-3752. |
[2] | LI Xiaoqin, ZHOU Xu, LI Shihua. Effect of Fly Ash Content on Properties of PVA-ECC [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3783-3790. |
[3] | LIU Zhenzheng, XIE Chunlei, WANG Xueying, GUO Liang, WU Yueyue, CHEN Qin, DUAN Ping. Preparation of Rice Husk Ash and Its Effect on Mechanical Properties of Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3881-3888. |
[4] | YANG Lingming, ZHANG Weixiang, ZHOU Shaoqing. Influence of Basalt Fiber on Properties of Traditional Sticky Rice-Lime Mortar and Its Mechanism Analysis [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3924-3931. |
[5] | ZHOU Wentao, LI Jianlin. Preparation and Properties of Graphene/Glass Bulk Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3998-4002. |
[6] | YANG Lei;HE Ting-shu;GAI Guo-sheng;HE Juan;CHEN Chang. Effect of Fiber Properties on Mechanical Properties and Microstructures of Autoclaved Aerated Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(6): 1813-1817. |
[7] | ZHANG Fan;NIU Huan-huan;LI Wen;FAN Bing-bing;ZHANG Rui. Investigation on the Manufacturing Process and Properties of Ceramic Wall Brick and Floor Tile with Fly Ash [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(6): 1941-1945. |
[8] | ZHANG Chun-mei;CHENG Xiao-wei;YANG Yong-sheng;GUO Xiao-yang;CHEN Zu-wei. Synthesis and Performance Study of Self-repairing Microcapsules for Micro-cracks of Oil-well Cement Matrix [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(6): 2035-2041. |
[9] | LI Xiang-guo;MING Tian;LIU Zhuo-lin;REN Zhao-feng;JIANG Wen-guang. Research on Durability and Mechanical Properties of Carbon Nanotube Cement Matrix Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(5): 1497-1502. |
[10] | LI Ming;ZHANG Yan;WANG Yan-liang;LI Yong;CHEN E-qiu;YIN Xiao-peng. Research on Carbonation Depth and Mechanical Properties of Concrete of Transmission Lines in Arid Areas [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(5): 1556-1562. |
[11] | HUANG Sai-jia. Mechanical Properties of Hydrated Calcium Silicate Simulated by Molecular Dynamics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(5): 1687-1692. |
[12] | HUO Jun-fang;WEI Jian;LI Chen-xia;HOU Yong-li. Experimental Study on Frost Resistance of Recycled Concrete with Equivalent Volume Mortar Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(5): 1776-1780. |
[13] | XING Xiao-guang;XU Jin-yu;BAI Er-lei;WANG Yu-xian. Optimum Proportion and Performance of Styrene-acrylic Emulsion Modified Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(4): 1174-1180. |
[14] | LI Jian;ZHANG Shi-hao;FAN Bing-bing;ZHANG Rui. Preparation of High Performance B4C/Al Composite Materials by Vacuum Hot Pressing [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(4): 1377-1381. |
[15] | XUE Jin-shun;JIANG Ying-jun;CHEN Yu;SHU Yong-fa. Influence Factors of Mechanical Property of SRX Stabilized Crushed Stone Base on Vertical Vibration Test Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(4): 1387-1392. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||