BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2026, Vol. 45 ›› Issue (1): 81-91.DOI: 10.16552/j.cnki.issn1001-1625.2025.0800
• Cement and Concrete • Previous Articles Next Articles
JIN Qingping1(
), YANG Zhenyuan1, LIANG Yingqiang1, LIU Yundie2, SONG Shie1
Received:2025-08-06
Revised:2025-10-09
Online:2026-01-20
Published:2026-02-10
CLC Number:
JIN Qingping, YANG Zhenyuan, LIANG Yingqiang, LIU Yundie, SONG Shie. Load-Bearing Capacity of GFRP Bar Sea Sand Concrete Deep Flexural Members in Chloride Environment[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 81-91.
| Design level | Water-cement ratio | Cement/(kg·m-3) | Water/(kg·m-3) | Sand/(kg·m-3) | Gravel/(kg·m-3) |
|---|---|---|---|---|---|
| C40 | 0.4 | 537.5 | 215 | 494.25 | 1 153.25 |
Table 1 Mix proportion of sea sand concrete
| Design level | Water-cement ratio | Cement/(kg·m-3) | Water/(kg·m-3) | Sand/(kg·m-3) | Gravel/(kg·m-3) |
|---|---|---|---|---|---|
| C40 | 0.4 | 537.5 | 215 | 494.25 | 1 153.25 |
| Design strength of concrete | Compressive strength/MPa | Flexural strength/MPa | ||||
|---|---|---|---|---|---|---|
| C40 | 32.8 | 41.8 | 40.6 | 2.73 | 3.08 | 3.21 |
Table 2 Results of mechanical properties test of sea sand concrete
| Design strength of concrete | Compressive strength/MPa | Flexural strength/MPa | ||||
|---|---|---|---|---|---|---|
| C40 | 32.8 | 41.8 | 40.6 | 2.73 | 3.08 | 3.21 |
| Material | Diameter/mm | Tensile strength/MPa | Elastic modulus/GPa |
|---|---|---|---|
| GFRP bar | 6 | 1 042.93 | 59.7 |
Table 3 Mechanical properties parameters of GFRP bar
| Material | Diameter/mm | Tensile strength/MPa | Elastic modulus/GPa |
|---|---|---|---|
| GFRP bar | 6 | 1 042.93 | 59.7 |
| [1] | 侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来[J]. 中国科学院院刊, 2016, 31(12): 1326-1331. |
| HOU B R, ZHANG D, WANG P. Marine corrosion and protection: current status and prospect[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(12): 1326-1331 (in Chinese). | |
| [2] |
DONG Z Q, WU G, ZHAO X L, et al. The durability of seawater sea-sand concrete beams reinforced with metal bars or non-metal bars in the ocean environment[J]. Advances in Structural Engineering, 2020, 23(2): 334-347.
DOI URL |
| [3] | 侯卫星, 秦 磊, 郭盼盼, 等. 海水-海砂混凝土研究进展[J]. 济南大学学报(自然科学版), 2024, 38(2): 184-193. |
| HOU W X, QIN L, GUO P P, et al. Research progress on seawater-sea sand concrete[J]. Journal of University of Jinan (Science and Technology), 2024, 38(2): 184-193 (in Chinese). | |
| [4] |
CHEN Z P, LI S X, ZHOU J, et al. Flexural behavior of GFRP bars reinforced seawater sea sand concrete beams exposed to marine environment: experimental and numerical study[J]. Construction and Building Materials, 2022, 349: 128784.
DOI URL |
| [5] | 杨树桐, 孙忠科, 蒋济同, 等. 海洋骨料混凝土材料与结构性能研究进展[J]. 中国海洋大学学报(自然科学版), 2023, 53(10): 11-19. |
| YANG S T, SUN Z K, JIANG J T, et al. A review of material and structural properties of marine aggregate concrete[J]. Periodical of Ocean University of China, 2023, 53(10): 11-19 (in Chinese). | |
| [6] |
LIAO J J, ZENG J J, BAI Y L, et al. Bond strength of GFRP bars to high strength and ultra-high strength fiber reinforced seawater sea-sand concrete (SSC)[J]. Composite Structures, 2022, 281: 115013.
DOI URL |
| [7] |
HUA Y T, YIN S P, FENG L L. Bearing behavior and serviceability evaluation of seawater sea-sand concrete beams reinforced with BFRP bars[J]. Construction and Building Materials, 2020, 243: 118294.
DOI URL |
| [8] | 孙亚楠. 海水海砂混凝土中GFRP筋劣化机制与耐蚀改性研究[D]. 青岛: 青岛理工大学, 2024. |
| SUN Y N. Study on the deterioration mechanism and corrosion resistance modification of GFRP bars in seawater sea sand concrete[D]. Qingdao: Qingdao University of Technology, 2024 (in Chinese). | |
| [9] |
XIAO J Z, QIANG C B, NANNI A, et al. Use of sea-sand and seawater in concrete construction: current status and future opportunities[J]. Construction and Building Materials, 2017, 155: 1101-1111.
DOI URL |
| [10] | 刘 伟, 谢友均, 董必钦, 等. 海砂特性及海砂混凝土力学性能的研究[J]. 硅酸盐通报, 2014, 33(1): 15-22. |
| LIU W, XIE Y J, DONG B Q, et al. Study on characteristics of dredged marine sand and the mechanical properties of concrete made with dredged marine sand[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(1): 15-22 (in Chinese). | |
| [11] |
ZHOU H J, CHEN S Y, DU Y L, et al. Field test of a reinforced concrete bridge under marine environmental corrosion[J]. Engineering Failure Analysis, 2020, 115: 104669.
DOI URL |
| [12] |
DONG Z Q, WU G, ZHAO X L, et al. Durability test on the flexural performance of seawater sea-sand concrete beams completely reinforced with FRP bars[J]. Construction and Building Materials, 2018, 192: 671-682.
DOI URL |
| [13] |
REN F M, LIU T Y, CHEN G M, et al. Flexural behavior and modelling of FRP-bar reinforced seawater sea sand concrete beams exposed to subtropical coastal environment[J]. Construction and Building Materials, 2021, 309: 125071.
DOI URL |
| [14] | EL-SAYED T A, ALGASH Y A. Flexural behavior of ultra-high performance geopolymer RC beams reinforced with GFRP bars[J]. Case Studies in Construction Materials, 2021, 15: e00604. |
| [15] | 叶见曙. 结构设计原理[M]. 北京: 人民交通出版社, 2018. |
| YE J S. Principles of structural design[M]. Beijing: China Communications Press, 2018 (in Chinese). | |
| [16] |
BEDIWY A, MAHMOUD K, EL-SALAKAWY E. Structural behavior of FRCC layered deep beams reinforced with GFRP headed-end bars[J]. Engineering Structures, 2021, 243: 112648.
DOI URL |
| [17] | AL-GASHAM T S, MHALHAL J M, ABID S R. Flexural behavior of laced reinforced concrete moderately deep beams[J]. Case Studies in Construction Materials, 2020, 13: e00363. |
| [18] | ARABASI S, EL-MAADDAWY T. Reinforcing of discontinuity regions in concrete deep beams with GFRP composite bars[J]. Composites Part C: Open Access, 2020, 3: 100064. |
| [19] |
PAN D, YASEEN S A, CHEN K Y, et al. Study of the influence of seawater and sea sand on the mechanical and microstructural properties of concrete[J]. Journal of Building Engineering, 2021, 42: 103006.
DOI URL |
| [20] |
DHONDY T, REMENNIKOV A, SHIEKH M N. Benefits of using sea sand and seawater in concrete: a comprehensive review[J]. Australian Journal of Structural Engineering, 2019, 20(4): 280-289.
DOI URL |
| [21] | 周玲珠, 万钧涛, 郑 愚, 等. GFRP筋与海水海砂高掺量粉煤灰自密实混凝土的粘结性能研究[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(2): 211-219+236. |
| ZHOU L Z, WAN J T, ZHENG Y, et al. Study on bond behavior of GFRP bars and self-compacting concrete mixed with seawater sea-sand and high-volume fly ash[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2022, 54(2): 211-219+236 (in Chinese). | |
| [22] |
WANG Z K, ZHAO X L, XIAN G J, et al. Effect of sustained load and seawater and sea sand concrete environment on durability of basalt- and glass-fibre reinforced polymer (B/GFRP) bars[J]. Corrosion Science, 2018, 138: 200-218.
DOI URL |
| [23] |
JAFARI R, ALIZADEH ELIZEI M H, ZIAEI M, et al. Investigation of residual strength of GFRP bar reinforced concrete beams with recycled materials under elevated temperature[J]. Arabian Journal for Science and Engineering, 2024, 49(10): 13801-13820.
DOI |
| [24] |
WANG Z H, XIE J H, LI J L, et al. Flexural behaviour of seawater-sea sand concrete beams reinforced with GFRP bars: effects of the reinforcement ratio, stirrup ratio, shear span ratio and prestress level[J]. Journal of Building Engineering, 2022, 54: 104566.
DOI URL |
| [25] |
ZHU W J, FRANÇOIS R, CLELAND D, et al. Failure mode transitions of corroded deep beams exposed to marine environment for long period[J]. Engineering Structures, 2015, 96: 66-77.
DOI URL |
| [26] | NASSIF M K, ERFAN A M, FADEL O T, et al. Flexural behavior of high strength concrete deep beams reinforced with GFRP bars[J]. Case Studies in Construction Materials, 2021, 15: e00613. |
| [27] | 中华人民共和国住房和城乡建设部. 混凝土结构设计标准(2024版): GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010. |
| Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures (2024 edition): GB 50010—2010[S]. Beijing : China Building Industry Press, 2010 (in Chinese). | |
| [28] | 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. |
| Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standards for test methods of physical and mechanical properties of concrete: GB/T 50081—2019[S]. Beijing: China Construction Industry Publishing House (in Chinese). | |
| [29] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022—2013[S]. 北京: 中国标准出版社, 2014. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, National Standardization Administration of China. Test methods for basic mechanical properties of fiber reinforced composite bars: GB/T 30022—2013[S]. Beijing: China Standards Publishing House, 2014 (in Chinese). | |
| [30] |
DUO Y Y, LIU X G, LIU Y, et al. Environmental impact on the durability of FRP reinforcing bars[J]. Journal of Building Engineering, 2021, 43: 102909.
DOI URL |
| [31] |
ARCZEWSKA P, POLAK M A, PENLIDIS A. Degradation of glass fiber reinforced polymer (GFRP) bars in concrete environment[J]. Construction and Building Materials, 2021, 293: 123451.
DOI URL |
| [32] |
RIFAI M, EL-HASSAN H, EL-MAADDAWY T, et al. Durability of basalt FRP reinforcing bars in alkaline solution and moist concrete environments[J]. Construction and Building Materials, 2020, 243: 118258.
DOI URL |
| [33] |
WANG Z K, ZHAO X L, XIAN G J, et al. Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment[J]. Construction and Building Materials, 2017, 139: 467-489.
DOI URL |
| [34] | Guide test methods for fiber-reinforced polymer (FRP)composites for reinforcing or strengthening concrete and masonry structures: ACI 440.3R-12[S]. Farmington Hills, MI: American Concrete Institute, 2012. |
| [35] | 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012. |
| Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standards for test methods of concrete structures: GB/T 50152—2012[S]. Beijing : China Building Industry Press, 2012 (in Chinese). | |
| [36] |
DONG Z Q, SUN Y, ZHU H, et al. Shear behavior of hybrid seawater sea-sand concrete short beams reinforced with BFRP reinforcements[J]. Engineering Structures, 2022, 252: 113615.
DOI URL |
| [37] |
AHMED A, GUO S C, ZHANG Z H, et al. A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete[J]. Construction and Building Materials, 2020, 256: 119484.
DOI URL |
| [38] | 王鹏刚, 莫 芮, 隋晓萌, 等. 混凝土中氯盐-硫酸盐耦合侵蚀的化学-损伤-传输模型研究进展[J]. 硅酸盐学报, 2022, 50(2): 512-521. |
| WANG P G, MO R, SUI X M, et al. Chemo-damage-transport model of combined chloride-sulfate attack in concrete[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 512-521 (in Chinese). | |
| [39] | 中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术标准: GB 50608—2020[S]. 北京: 中国计划出版社, 2020. |
| Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for fiber reinforced polymer (FRP) in construction: GB 50608—2020[S]. Beijing: China Planning Press, 2020 (in Chinese). |
| [1] | LING Weicheng, KE Guojun, JIN Dan, CHEN Shanqiu, DUAN Xiongkaibin. Corrosion Inhibition of Rebar in Seawater-Sea Sand Concrete by MWCNTs/LDHs-NO2 [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2487-2494. |
| [2] | HUANG Heng, WANG Yan, LI Wenjun, ZHANG Shaohui, LI Zhaoguang, LI Aoyang. Effect of Polar Marine Environment on Mechanical Properties of GFRP Bars [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(11): 3980-3989. |
| [3] | ZHENG Jianlan, WANG Yasi, YE Yan. Influence of Undisturbed Sea Sand on Mechanical Properties of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2149-2156. |
| [4] | LI Qingwen, YU Mengmeng, LIU Yiwei, CAO Hang, GAO Senlin, NIE Fanfan, LI Ling. Mesoscopic Simulation on Axial Compression Performance of Standard Coal Gangue Concrete Circular-Columns Confined by GFRP Sheet [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(7): 2458-2471. |
| [5] | GUAN Jiwen, CHEN Hua, CHANG Ping, LIANG Qingwen, DAN Yu, YANG Hanning, CHEN Hongmei. Analysis on Bearing Capacity and Bending Ductility of GFRP-Coral Concrete Columns under Eccentric Compression [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(7): 2409-2418. |
| [6] | FAN Xiaochun, CUI Qi, ZHANG Ao, WANG Wenqi. Bending Performance of BFRP Bars Alkali-Activated Sea Sand Concrete Beams [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(12): 4242-4253. |
| [7] | YANG Chenglin, XU Ying, HONG Jian, KONG Xinli. Research Progress on Application of Sea Sand Concrete under Strong Dynamic Load [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(2): 415-422. |
| [8] | WANG Jing. Experiment Study on the Shrinkage Behavior of High Performance Steel Fiber Reinforced Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(8): 2869-2873. |
| [9] | WEI Hui;WU Tao;LIU Xi;LUO Ding. Finite Element Analysis for Shear Behavior of High-strength Lightweight Aggregate Concrete Deep Flexural Members [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2015, 34(10): 2954-2959. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||