BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2026, Vol. 45 ›› Issue (1): 69-80.DOI: 10.16552/j.cnki.issn1001-1625.2025.0799
• Cement and Concrete • Previous Articles Next Articles
LI Tong(
), WANG Qinghe(
), ZHANG Yichao
Received:2025-08-07
Revised:2025-09-04
Online:2026-01-20
Published:2026-02-10
CLC Number:
LI Tong, WANG Qinghe, ZHANG Yichao. Temperature Response and Thermo-Mechanical Field Regulation Mechanism of Phase Change Concrete under Freeze-Thaw Cycles[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 69-80.
| Item | Specific heat capacity/(J·kg-1·K-1) | Thermal conductivity/(W·m-1·K-1) | Coefficient of thermal expansion/K-1 | Density/ (kg·m-3) | Elastic modulus/GPa | Poisson ratio |
|---|---|---|---|---|---|---|
| Aggregate | 840.2 | 2.932 | - | 2 600 | 71.20 | 0.16 |
| ITZ between aggregate and new mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 16.04 | 0.20 |
| New mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 32.07 | 0.22 |
ITZ between old mortar and new mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 13.55 | 0.20 |
| Old mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 18.43 | 0.22 |
ITZ between aggregate and old mortar | 840.3 | 0.931 | 1×10-5 | 2 160 | 11.06 | 0.20 |
| Phase change aggregate | 1 386.4 | 0.220 | 1×10-5 | 1 480 | 15.80 | 0.25 |
Table 1 Thermal and mechanical parameters of phase change concrete
| Item | Specific heat capacity/(J·kg-1·K-1) | Thermal conductivity/(W·m-1·K-1) | Coefficient of thermal expansion/K-1 | Density/ (kg·m-3) | Elastic modulus/GPa | Poisson ratio |
|---|---|---|---|---|---|---|
| Aggregate | 840.2 | 2.932 | - | 2 600 | 71.20 | 0.16 |
| ITZ between aggregate and new mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 16.04 | 0.20 |
| New mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 32.07 | 0.22 |
ITZ between old mortar and new mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 13.55 | 0.20 |
| Old mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 18.43 | 0.22 |
ITZ between aggregate and old mortar | 840.3 | 0.931 | 1×10-5 | 2 160 | 11.06 | 0.20 |
| Phase change aggregate | 1 386.4 | 0.220 | 1×10-5 | 1 480 | 15.80 | 0.25 |
Fig.4 Damage contour plots and grayscale images of phase change concrete with a recycled aggregate replacement rate of 50% and a phase change material content of 4%
| [1] | 徐长全. 被动式太阳房重质储热系统热性能实验研究[D]. 大连: 大连理工大学, 2014. |
| XU C Q. Experimental study on the thermal performance of passive solar building heavy heat storage system[D]. Dalian: Dalian University of Technology, 2014 (in Chinese). | |
| [2] | 王鹏, 徐时贤, 李国红, 等. 跨海大桥混凝土服役挑战及检测方法综述[J]. 材料导报, 2023, 37(增刊1): 212-219. |
| WANG P, XU S X, LI G H, et al. Service challenges and detection methods of sea-crossing bridge concrete[J]. Materials Reports, 2023, 37(supplement 1): 212-219 (in Chinese). | |
| [3] |
YEON J H. Thermal behavior of cement mortar embedded with low-phase transition temperature PCM[J]. Construction and Building Materials, 2020, 252: 119168.
DOI URL |
| [4] |
TIAN Y, LAI Y M, QIN Z P, et al. Numerical investigation on the thermal control performance and freeze-thaw resistance of a composite concrete pier with microencapsulated phase change materials[J]. Solar Energy, 2022, 231: 970-984.
DOI URL |
| [5] | 于本田, 陈延飞, 李双洋, 等. 正十四烷/石墨低温相变水泥基材料的制备及冻融损伤演化[J]. 复合材料学报, 2022, 39(6): 2864-2874. |
| YU B T, CHEN Y F, LI S Y, et al. Preparation and freeze-thaw damage evolution of n-tetradecane/graphite low-temperature phase change cement-based materials[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2864-2874 (in Chinese). | |
| [6] | 陈鹏. 相变抗冻混凝土的制备及抗冻效果评价[D]. 西安: 西京学院, 2020. |
| CHEN P. Preparation of phase change antifreeze concrete and evaluation of frost resistance effect[D]. Xi’an: Xijing University, 2020 (in Chinese). | |
| [7] | 田艳. 相变储能混凝土制备及热力特性研究[D]. 兰州: 兰州大学, 2023. |
| TIAN Y. Preparation and thermal properties of phase change energy storage concrete[D]. Lanzhou: Lanzhou University, 2023 (in Chinese). | |
| [8] | 刘干斌, 苏销淇, 金力涵, 等. 相变钢球混凝土能源桩热力学特性试验和模拟[J]. 湖南大学学报(自然科学版), 2023, 50(11): 136-146. |
| LIU G B, SU X Q, JIN L H, et al. Experiment and simulation on thermodynamic characteristics of phase change steel ball concrete energy pile[J]. Journal of Hunan University (Natural Sciences), 2023, 50(11): 136-146 (in Chinese). | |
| [9] | 梁秋群, 陈宣东, 胡祥. 冻融循环下混凝土中氯离子传输机制细观模拟[J]. 硅酸盐通报, 2024, 43(6): 2102-2110. |
| LIANG Q Q, CHEN X D, HU X. Mesoscopic simulation of chloride ion transport mechanism in concrete under freeze-thaw cycles[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(6): 2102-2110 (in Chinese). | |
| [10] | 雷斌, 黄威武, 王时彦, 等. 再生骨料混凝土在荷载-冻融条件下的多场耦合数值模拟[J]. 南昌大学学报(工科版), 2023, 45(2): 144-153. |
| LEI B, HUANG W W, WANG S Y, et al. Multi field coupling numerical simulation of recycled aggregate concrete under freeze-thaw conditions[J]. Journal of Nanchang University (Engineering & Technology), 2023, 45(2): 144-153 (in Chinese). | |
| [11] | 郭常凯, 王磊, 章青. 基于COMSOL平台的水工混凝土冻融损伤模型试验验证与应用[J]. 混凝土, 2023(2): 40-48. |
| GUO C K, WANG L, ZHANG Q. Validation and application of hydraulic concrete freeze-thaw damage model test based on COMSOL platform[J]. Concrete, 2023(2): 40-48 (in Chinese). | |
| [12] | 郭宗伦. 冻融与锈蚀耦合作用下寒冷海域RC桥墩抗震性能研究[D]. 大连: 大连理工大学, 2024. |
| GUO Z L. Research on seismic performance of RC bridge piers in cold sea areas under the coupling effect of freeze-thaw and rust[D]. Dalian: Dalian University of Technology, 2024 (in Chinese). | |
| [13] |
FULLER W B, THOMPSON S E. The laws of proportioning concrete[J]. Transactions of the American Society of Civil Engineers, 1907, 59(2): 67-143.
DOI URL |
| [14] | WALRAVEN J, REINHARDT H. Concrete mechanics. Part a: theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading[J]. Nasa Stirecon Technical Report, 1981, 82: 25417. |
| [15] | 任苗. 硅藻土定形相变储热水泥基材料的制备与性能优化[D]. 哈尔滨: 哈尔滨工业大学, 2022. |
| REN M. Preparation and properties optimization of diatomite phase change thermal cement-based materials[D]. Harbin: Harbin Institute of Technology, 2022 (in Chinese). | |
| [16] | 雷斌, 李召行, 邹俊, 等. 荷载与腐蚀冻融耦合作用下再生混凝土耐久性能试验[J]. 农业工程学报, 2018, 34(20): 169-174. |
| LEI B, LI Z H, ZOU J, et al. Experiment on durability of recycled concrete under coupling multi-factors of load and corrosion freeze-thaw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 169-174 (in Chinese). | |
| [17] | 杜修力, 金浏. 考虑过渡区界面影响的混凝土宏观力学性质研究[J]. 工程力学, 2012, 29(12): 72-79. |
| DU X L, JIN L. Research on the influence of interfacial transition zone on the macro-mechanical properties of concrete[J]. Engineering Mechanics, 2012, 29(12): 72-79 (in Chinese). | |
| [18] | 赵杨. 多尺度混凝土结构细观数值模拟[D]. 湖南: 湖南大学, 2019. |
| ZHAO Y. Meso-numerical simulation of concrete based on multi-scale analysis[D]. Hunan: Hunan University, 2019 (in Chinese). | |
| [19] |
ŠAVIJA B, LUKOVIĆ M, PACHECO J, et al. Cracking of the concrete cover due to reinforcement corrosion: a two-dimensional lattice model study[J]. Construction and Building Materials, 2013, 44: 626-638.
DOI URL |
| [20] | 汪奔, 王弘, 张志强, 等. 基于网格生成的随机凹凸型混凝土骨料细观建模方法[J]. 计算力学学报, 2017, 34(5): 591-596. |
| WANG B, WANG H, ZHANG Z Q. Mesoscopic modeling method of concrete aggregates with arbitrary shapes based on mesh generation[J]. Chinese Journal of Computational Mechanics, 2017, 34(5): 591-596 (in Chinese). | |
| [21] | 杜敏, 金浏, 李冬, 等. 骨料粒径对混凝土劈拉性能及尺寸效应影响的细观数值研究[J]. 工程力学, 2017, 34(9): 54-63. |
| DU M, JIN L, LI D, et al. Mesoscopic simulation study of the influence of aggregate size on mechanical properties and specimen size effect of concrete subjected to splitting tensile loading[J]. Engineering Mechanics, 2017, 34(9): 54-63 (in Chinese). | |
| [22] |
KWON M S, JIN X H, KIM Y C, et al. Development of microencapsulated PCM concrete with improved strength and long-term thermal performance using MWCNTs[J]. Construction and Building Materials, 2024, 442: 137609.
DOI URL |
| [23] |
ALKHTEEB L, DAWOOD M B. The effect of recycled aggregate on properties of concrete: a review[J]. Hybrid Advances, 2025, 11: 100535.
DOI URL |
| [24] | 段安. 受冻融混凝土本构关系研究和冻融过程数值模拟[D]. 北京: 清华大学, 2009. |
| DUAN A. Research on constitutive relationship of frozen-thawed concrete and mathematical modeling of freeze-thaw process[D]. Beijing: Tsinghua University, 2009 (in Chinese). | |
| [25] | 张田, 侯正猛, 李晓琴, 等. 混凝土塑性损伤模型参数计算方法研究[J]. 计算力学学报, 2024, 41(6): 1130-1137. |
| ZHANG T, HOU Z M, LI X Q, et al. Research on the calculation of model parameters for concrete plastic damage model in abaqus[J]. Chinese Journal of Computational Mechanics, 2024, 41(6): 1130-1137 (in Chinese). | |
| [26] | 方金杰. 基于细观模型的再生混凝土拉伸应力-应变全曲线研究[D]. 福州: 福州大学, 2018. |
| FANG J J. Study on tensile stress strain curve of recycled concrete based on meso-scale model[D]. Fuzhou: Fuzhou University, 2018 (in Chinese). | |
| [27] |
GARBOCZI E J, BENTZ D P. Analytical formulas for interfacial transition zone properties[J]. Advanced Cement Based Materials, 1997, 6(3/4): 99-108.
DOI URL |
| [28] |
ZHAO X H, CHEN W F. Effective elastic moduli of concrete with interface layer[J]. Computers & Structures, 1998, 66(2/3): 275-288.
DOI URL |
| [29] |
LUTZ M P, MONTEIRO P J M, ZIMMERMAN R W. Inhomogeneous interfacial transition zone model for the bulk modulus of mortar[J]. Cement and Concrete Research, 1997, 27(7): 1113-1122.
DOI URL |
| [30] |
YANG C C. Effect of the transition zone on the elastic moduli of mortar[J]. Cement and Concrete Research, 1998, 28(5): 727-736.
DOI URL |
| [31] | 郑丽华. 考虑细观的水泥混凝土养生变异性研究[D]. 西安: 长安大学, 2010. |
| ZHENG L H. Study on curing variability of cement concrete considering microscopic[D]. Xi’an: Chang’an University, 2010 (in Chinese). | |
| [32] | 唐春安, 朱万成. 混凝土损伤与断裂: 数值试验[M]. 北京: 科学出版社, 2003. |
| TANG C A, ZHU W C. Damage and fracture of concrete: a numerical experiment[M]. Beijing: Science Press, 2003 (in Chinese). | |
| [33] | 宿辉, 党承华, 李彦军. 考虑不均质度的岩石声发射数值模拟研究[J]. 岩土力学, 2011, 32(6): 1886-1890. |
| SU H, DANG C H, LI Y J. Study of numerical simulation of acoustic emission in rock of inhomogeneity[J]. Rock and Soil Mechanics, 2011, 32(6): 1886-1890 (in Chinese). | |
| [34] |
RAO G A, RAGHU PRASAD B K. Influence of the roughness of aggregate surface on the interface bond strength[J]. Cement and Concrete Research, 2002, 32(2): 253-257.
DOI URL |
| [35] | 周翠. 砂浆-天然骨料界面力学性能研究[D]. 大连: 大连理工大学, 2014. |
| ZHOU C. Experimental studies on mechanical properties of mortar-natural aggregate interface[D]. Dalian: Dalian University of Technology, 2014 (in Chinese). | |
| [36] |
RAMESH G, SOTELINO E D, CHEN W F. Effect of transition zone on elastic moduli of concrete materials[J]. Cement and Concrete Research, 1996, 26(4): 611-622.
DOI URL |
| [37] | 邓存武. 再生混凝土细观数值模拟分析[D]. 武汉: 华中科技大学, 2020. |
| DENG C. Microscopic numerical simulation analysis of recycled concrete[D]. Wuhan: Huazhong University of Science and Technology, 2020 (in Chinese). | |
| [38] | 李清富, 匡一航, 郭威. CDP模型参数计算及取值方法验证[J]. 郑州大学学报(工学版), 2021, 42(2): 43-48. |
| LI Q F, KUANG Y H, GUO W. CDP model parameters calculation and value method verification[J]. Journal of Zhengzhou University(Engineering Science), 2021, 42(2): 43-48 (in Chinese). | |
| [39] | 王琼与, 桑登峰, 娄学谦, 等. 混凝土损伤塑性模型参数选取及应用[J]. 水运工程, 2023(6): 26-31+50. |
| WANG Q Y, SANG D F, LOU X Q, et al. Parameter selection and application of concrete damage plasticity model[J]. Port & Waterway Engineering, 2023(6): 26-31+50 (in Chinese). | |
| [40] | 周禹辛. 冻融环境下混凝土的动态数值模拟分析[D]. 大连: 大连理工大学, 2019. |
| ZHOU Y X. Dynamic numerical simulation analysis of concrete under freeze-thaw environment[D]. Dalian: Dalian University of Technology, 2019 (in Chinese). | |
| [41] | 孟智田, 李宗利. 基于损伤模型的混凝土冻融循环过程数值模拟研究[J]. 水资源与水工程学报, 2024, 35(4): 136-143+152. |
| MENG Z T, LI Z L. Numerical simulation of concrete freeze-thaw cycles based on damage model[J]. Journal of Water Resources and Water Engineering, 2024, 35(4): 136-143+152 (in Chinese). | |
| [42] | 祝文化, 李建雄, 张明中. 混凝土损伤裂纹的二维数字图像盒维数算法[J]. 武汉理工大学学报, 2008, 30(6): 60-62. |
|
ZHU W H, LI J X, ZHANG M Z. 2D digital image box-counting dimension calculational method of cracks on damaged concrete[J]. Journal of Wuhan University of Technology, 2008, 30(6): 60-62 (in Chinese).
DOI URL |
|
| [43] |
NAYAK S, ANOOP KRISHNAN N M, DAS S. Microstructure-guided numerical simulation to evaluate the influence of phase change materials (PCMs) on the freeze-thaw response of concrete pavements[J]. Construction and Building Materials, 2019, 201: 246-256.
DOI URL |
| [44] |
TIAN Y, QIN Z P, LIN Z Z, et al. Study on the physical mechanical properties and freeze-thaw resistance of energy storage concrete with artificial phase change aggregate[J]. Journal of Building Engineering, 2025, 99: 111506.
DOI URL |
| [45] |
LI D S, SUN B X, YANG L J, et al. Mechanical and thermal properties of recycled coarse aggregate concrete incorporating microencapsulated phase change materials and recycled tire rubber granules and its freeze-thaw resistance[J]. Journal of Building Engineering, 2025, 101: 111821.
DOI URL |
| [46] |
YEON J H, KIM K K. Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement[J]. Construction and Building Materials, 2018, 177: 202-209.
DOI URL |
| [47] |
LEI B, LI W G, TANG Z, et al. Durability of recycled aggregate concrete under coupling mechanical loading and freeze-thaw cycle in salt-solution[J]. Construction and Building Materials, 2018, 163: 840-849.
DOI URL |
| [1] | HUANG Zhenhui, ZHAO Fei, CHANG Jun, LI Wenzheng, ZHOU Zhi. Mechanical Properties and Carbon Sequestration Capacity of CO2-Cured Recycled Aggregate Concrete Incorporating Coconut Shell Biochar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 156-164. |
| [2] | HUANG Zhengtao, GUAN Junxiao, NIU Yapeng, CUI Yicheng, HE Xiongfei. Experimental Study on Road Performance of Cement Stabilized Macadam Incorporating Recycled Aggregate [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 359-366. |
| [3] | ZHANG Zhengqi, LIU Zhixin, RUI Zhaocheng, SHI Jierong, YANG Xinhong. Properties of Geopolymer-Stabilized Construction Solid Waste Recycled Aggregates [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3347-3354. |
| [4] | YI Qigui, ZHAN Lyujin, LIU Xiang, XU Ruitian, LIANG Ying, CHEN Zongping. Sodium Bicarbonate Solution Carbonation: a Novel Method to Enhance Recycled Aggregate Concrete Performance [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3227-3237. |
| [5] | LYU Jieqin, YUAN Hao, GAO Ling, WANG Yan, GU Yang, SUN Renjuan. Effect of Abrasion on Physical Properties and Apparent Morphology of Recycled Concrete Aggregates [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3218-3226. |
| [6] | WANG Jiahui, WANG Fengchi, SUN Chang. Frost Resistance of Recycled Tire Polymer Fiber Cement Modified Carbonated Saline Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2720-2729. |
| [7] | REN Enzhong, ZHANG Xiang, DONG Longhui. Mechanical Properties of Cracked Concrete Specimens with Grouting Repair under Freeze-Thaw Cycles [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2135-2148. |
| [8] | LIU Haoxin, QIAO Hongxia, MA Farong, FU Yong, WEI Dingbang, ZHANG Lei. Deterioration Pattern and Life Prediction of Mechanism Sand Concrete under Composite Salt Freeze-Thaw Cycle [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1634-1645. |
| [9] | WANG Dongkui, CHEN Xuewu, XI Shuang, WANG Shuangxi, JIANG Shui. Performance Study of Cement Stabilized Recycled Aggregate Base under Synergistic Effect of Steel Slag and Fly Ash [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1957-1966. |
| [10] | ZHONG Chuanli, SU Xu, ZHANG Liang, KONG Zihang, LI Haitian, ZHU Qingnan, CHANG Honglei. Effect of Carbonized Recycled Fine Aggregate on Mechanical Properties of Recycled Mortar and Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1468-1476. |
| [11] | HUANG Liang, LI Beixing, YANG Yucheng, TIAN Shenhua. Effect of Mineral Viscosity Reducer on Rheological, Mechanical Properties and Durability of Recycled Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1458-1467. |
| [12] | XUE Gang, YAO Wenlong, SHAO Jianwen, ZHU Haojun, XU Sheng, DONG Wei. Effect of Freeze-Thaw Cycle on Fatigue Resistance of Rubber Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1448-1457. |
| [13] | SUN Xiaofei, WU Tianqian, YU Zhenpeng, PAN Lijun. Splitting Tensile Mechanical Properties and Failure Mechanism of Steel Fiber Recycled Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 883-891. |
| [14] | YAN Jie, XING Guobin, FENG Longhui, LIANG Chongyang, XIE Jun, WENG Weisu, BAI Qijing. Effect of Ramie Fiber on Mechanical Strength of Recycled Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 455-462. |
| [15] | ZHU Lei, SUN Jinting, JIA Hongtao, HOU Lei, LI Shuo, GUO Xinchen. Accounting Methodology for Carbon Reduction Using Recycled Aggregate from Construction Waste Instead of Natural Aggregate [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 642-650. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||