BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2026, Vol. 45 ›› Issue (1): 30-39.DOI: 10.16552/j.cnki.issn1001-1625.2025.0619
• Cement and Concrete • Previous Articles Next Articles
YANG Zhaoning1,2(
), ZHANG Duan1,2, SUN Boxue1,2(
), GAO Feng1,2, LI Xiaoqing1,2, NIE Zuoren1,2, CUI Suping1,2
Received:2025-06-24
Revised:2025-07-14
Online:2026-01-20
Published:2026-02-10
CLC Number:
YANG Zhaoning, ZHANG Duan, SUN Boxue, GAO Feng, LI Xiaoqing, NIE Zuoren, CUI Suping. Time-Lag Analysis and Dynamic Accounting of Environmental Benefits of Pavement Cement Concrete Carbon Sequestration[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 30-39.
| Flow | Input or output/t | |
|---|---|---|
| Resourse | Limestone | 1.05 |
| Sandstone | 7.08×10-2 | |
| Iron powder | 1.95×10-2 | |
| Bauxite | 7.62×10-2 | |
| Gypsum | 3.92×10-2 | |
| Energy | Coal | 0.147 |
| Emission | CO2 | 0.703 |
Table 1 Life cycle inventory for cement production
| Flow | Input or output/t | |
|---|---|---|
| Resourse | Limestone | 1.05 |
| Sandstone | 7.08×10-2 | |
| Iron powder | 1.95×10-2 | |
| Bauxite | 7.62×10-2 | |
| Gypsum | 3.92×10-2 | |
| Energy | Coal | 0.147 |
| Emission | CO2 | 0.703 |
| Parameter | Value | Data resource |
|---|---|---|
| 1.58 mm/a0.5 | [ | |
| 0.5 mm/a0.5 | [ | |
| Pavement width | 7.5 m | |
| 52% | [ | |
| 0.75 | [ | |
| 335 kg/m3 |
Table 2 Main parameters for carbon sequestration accounting of pavement cement concrete
| Parameter | Value | Data resource |
|---|---|---|
| 1.58 mm/a0.5 | [ | |
| 0.5 mm/a0.5 | [ | |
| Pavement width | 7.5 m | |
| 52% | [ | |
| 0.75 | [ | |
| 335 kg/m3 |
| Particle size grading | Particle size distribution percentage/% |
|---|---|
| <10 mm | 17.8 |
| 10~<30 mm | 27.1 |
| 30~50 mm | 17.3 |
| >50 mm | 37.8 |
Table 3 Waste concrete particle size distribution
| Particle size grading | Particle size distribution percentage/% |
|---|---|
| <10 mm | 17.8 |
| 10~<30 mm | 27.1 |
| 30~50 mm | 17.3 |
| >50 mm | 37.8 |
| Scenario | Temporal distribution by life cycle phase/a | GWP/ kgCO2e | TAWP/ kgCO2e | α | β/kgCO2e | ||
|---|---|---|---|---|---|---|---|
| Service phase | Demolition phase | Secondary use phase(landfill) | |||||
| Baseline | 30 | 0.4 | 69.6 | 1.10×105 | 7.17×104 | 0.65 | 3.86×104 |
| Post-demolition stockpiling | 30 | 1.0 | 69.0 | 1.24×105 (+11.95%) | 8.29×104 (+15.60%) | 0.69 (+5.63%) | 3.49×104 (-9.67%) |
| Long-service-life pavement | 40 | 0.4 | 59.6 | 1.08×105 (-2.28%) | 6.34×104 (-11.70%) | 0.59 (-9.65%) | 4.45×104 (+15.24%) |
| Short-service-life pavement | 20 | 0.4 | 79.6 | 1.26×105 (+14.59%) | 8.83×104 (+23.01%) | 0.71 (+9.39%) | 3.26×104 (-15.62%) |
Table 4 Sensitivity analysis results under different scenarios
| Scenario | Temporal distribution by life cycle phase/a | GWP/ kgCO2e | TAWP/ kgCO2e | α | β/kgCO2e | ||
|---|---|---|---|---|---|---|---|
| Service phase | Demolition phase | Secondary use phase(landfill) | |||||
| Baseline | 30 | 0.4 | 69.6 | 1.10×105 | 7.17×104 | 0.65 | 3.86×104 |
| Post-demolition stockpiling | 30 | 1.0 | 69.0 | 1.24×105 (+11.95%) | 8.29×104 (+15.60%) | 0.69 (+5.63%) | 3.49×104 (-9.67%) |
| Long-service-life pavement | 40 | 0.4 | 59.6 | 1.08×105 (-2.28%) | 6.34×104 (-11.70%) | 0.59 (-9.65%) | 4.45×104 (+15.24%) |
| Short-service-life pavement | 20 | 0.4 | 79.6 | 1.26×105 (+14.59%) | 8.83×104 (+23.01%) | 0.71 (+9.39%) | 3.26×104 (-15.62%) |
| [1] |
SHEN L, GAO T M, ZHAO J N, et al. Factory-level measurements on CO2 emission factors of cement production in China[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 337-349.
DOI URL |
| [2] | 国家统计局. 中国统计年鉴2023 [DB/OL]. ( 2023-09-15) [ 2025-06-10]. http://www.stats.gov.cn/sj/ndsj/2023/indexch.htm. |
| National Bureau of Statistics of China. China statistical yearbook—2023 [DB/OL]. ( 2023-09-15) [ 2025-06-10]. http://www.stats.gov.cn/sj/ndsj/2023/indexch.htm (in Chinese). | |
| [3] | 张 宾, 林永权, 陶从喜. 水泥工业碳中和技术现状与趋势[J]. 中国水泥, 2022(10): 57-61. |
| ZHANG B, LIN Y Q, TAO C X. Present situation and trend of carbon neutralization technology in cement industry[J]. China Cement, 2022(10): 57-61 (in Chinese). | |
| [4] | 唐鋆磊, 颜 安, 张海龙, 等. 腐蚀防护对钢铁材料降低碳排放的重要影响: 以钢质管道全生命周期碳排放计量研究为例[J]. 中国科学: 技术科学, 2023, 53(1): 53-70. |
| TANG J L, YAN A, ZHANG H L, et al. Importance of corrosion protection on steel materials in reducing carbon emissions: carbon emission measurement throughout the life cycle of steel pipeline as an example[J]. Scientia Sinica (Technologica), 2023, 53(1): 53-70 (in Chinese). | |
| [5] | ISO. Environmental management—life cycle assessment—principles and framework: [S]. Geneva: ISO, 2006. |
| [6] | 刘罗茜, 雷涯邻, 支树洁, 等. 中国水泥行业点源层面CCUS技术减排潜力与优化部署[J]. 北京理工大学学报(社会科学版), 2024, 26(4): 56-67. |
| LIU L Q, LEI Y L, ZHI S J, et al. Potential and optimization deployment of CCUS technology emission reduction at point source level in China’s cement industry[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2024, 26(4): 56-67 (in Chinese). | |
| [7] | 罗 雷, 郭旸旸, 李寅明, 等. 碳中和下水泥行业低碳发展技术路径及预测研究[J]. 环境科学研究, 2022, 35(6): 1527-1537. |
| LUO L, GUO Y Y, LI Y M, et al. Research on low-carbon development technology path and forecast of cement industry under carbon neutral situation[J]. Research of Environmental Sciences, 2022, 35(6): 1527-1537 (in Chinese). | |
| [8] | LAGERBLAD B. Carbon dioxide uptake during concrete life cycle: state of the art[M]. Stockholm: Swedish Cement and Concrete Research Institute, 2005. |
| [9] |
PADE C, GUIMARAES M. The CO₂ uptake of concrete in a 100 year perspective[J]. Cement and Concrete Research, 2007, 37(9): 1348-1356.
DOI URL |
| [10] | 郗凤明, 石铁矛, 王娇月, 等. 水泥材料碳汇研究综述[J]. 气候变化研究进展, 2015, 11(4): 288-296. |
| XI F M, SHI T M, WANG J Y, et al. Review on carbon sink research of cement materials[J]. Climate Change Research, 2015, 11(4): 288-296 (in Chinese). | |
| [11] |
XI F M, DAVIS S J, CIAIS P, et al. Substantial global carbon uptake by cement carbonation[J]. Nature Geoscience, 2016, 9(12): 880-883.
DOI |
| [12] |
HUANG Z, WANG J Y, BING L F, et al. Global carbon uptake of cement carbonation accounts 1930—2021[J]. Earth System Science Data, 2023, 15(11): 4947-4958.
DOI URL |
| [13] |
VAN ROIJEN E, SETHARES K, KENDALL A, et al. The climate benefits from cement carbonation are being overestimated[J]. Nature Communications, 2024, 15(1): 4848.
DOI PMID |
| [14] | 马铭婧, 黄 子, 王娇月, 等. 水泥碳汇核算及其对中国碳中和的贡献[J]. 中国科学: 地球科学, 2024, 54(6): 2086-2097. |
| MA M J, HUANG Z, WANG J Y, et al. Accounting of cement carbon sink and its contribution to China’s carbon neutrality[J]. Scientia Sinica (Terrae), 2024, 54(6): 2086-2097 (in Chinese). | |
| [15] | JOOS F, ROTH R, FUGLESTVEDT J S, et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis[J]. Atmospheric Chemistry and Physics, 2013, 13(5): 2793-2825. |
| [16] |
SHINE K P, FUGLESTVEDT J S, HAILEMARIAM K, et al. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases[J]. Climatic Change, 2005, 68(3): 281-302.
DOI URL |
| [17] |
PETERS G P, AAMAAS B, LUND M T, et al. Alternative “global warming” metrics in life cycle assessment: a case study with existing transportation data[J]. Environmental science & technology, 2011, 45(20): 8633-8641.
DOI URL |
| [18] |
ALLEN M R, FUGLESTVEDT J S, SHINE K P, et al. New use of global warming potentials to compare cumulative and short-lived climate pollutants[J]. Nature Climate Change, 2016, 6(8): 773-776.
DOI |
| [19] |
LEVASSEUR A, LESAGE P, MARGNI M, et al. Considering time in LCA: dynamic LCA and its application to global warming impact assessments[J]. Environmental Science & Technology, 2010, 44(8): 3169-3174.
DOI URL |
| [20] | BSI. PAS 2050:2011 specification for the assessment of the life cycle greenhouse gas emissions of goods and services[R]. London: British Standards Institution, 2011. |
| [21] |
KENDALL A. Time-adjusted global warming potentials for LCA and carbon footprints[J]. The International Journal of Life Cycle Assessment, 2012, 17(8): 1042-1049.
DOI URL |
| [22] | 中华人民共和国交通运输部. 中国交通运输年鉴(2023)[M]. 北京: 人民交通出版社, 2023. |
| Ministry of Transport of the People’s Republic of China. China transportation yearbook (2023)[M]. Beijing: China Communications Press, 2023 (in Chinese). | |
| [23] | SANTERO N J, HORVATH A. Global warming potential of pavements[J]. Environmental Research Letters, 2009, 4(3): 034011. |
| [24] | AZARIJAFARI H, GUO F D, GREGORY J, et al. Carbon uptake of concrete in the US pavement network[J]. Resources, Conservation and Recycling, 2021, 167: 105397. |
| [25] | LOIJOS A, SANTERO N, OCHSENDORF J. Life cycle climate impacts of the US concrete pavement network[J]. Resources, Conservation and Recycling, 2013, 72: 76-83. |
| [26] | IPCC. Climate change 2007: the physical science basis[R]. Geneva: IPCC, 2007. |
| [27] | DODOO A, GUSTAVSSON L, SATHRE R. Carbon implications of end-of-life management of building materials[J]. Resources, Conservation and Recycling, 2009, 53(5): 276-286. |
| [28] |
VAN ROIJEN E, MILLER S A, DAVIS S J. Building materials could store more than 16 billion tonnes of CO2 annually[J]. Science, 2025, 387(6730): 176-182.
DOI URL |
| [29] | 杨 明, 罗 晶, 张 冬, 等. 既有设施拆除固废再利用的碳减排效益评价[J]. 公路, 2024, 69(7): 285-291. |
| YANG M, LUO J, ZHANG D, et al. Carbon emission reduction evaluation for the reuse of demolition solid waste from existing infrastructure[J]. Highway, 2024, 69(7): 285-291 (in Chinese). | |
| [30] | 秦慧敏. 高速公路水泥混凝土路面“白改黑” 设计与应用[J]. 公路, 2024, 69(11): 76-81. |
| QIN H M. Design and application of “white to black” for cement concrete pavement of expressway[J]. Highway, 2024, 69(11): 76-81 (in Chinese). | |
| [31] | 丛卓红, 陈恒达, 郑南翔, 等. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116. |
| CONG Z H, CHEN H D, ZHENG N X, et al. Surface texture of cement concrete pavement: a review[J]. Materials Reports, 2020, 34(9): 9110-9116 (in Chinese). |
| [1] | YI Qigui, ZHAN Lyujin, LIU Xiang, XU Ruitian, LIANG Ying, CHEN Zongping. Sodium Bicarbonate Solution Carbonation: a Novel Method to Enhance Recycled Aggregate Concrete Performance [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3227-3237. |
| [2] | KONG Aisan, QIAN Sijia, WANG Wei, MA Xukun, LI Na. Shear Strength Characteristics of Cement Soil Modified with Polypropylene Fiber and Carbonation Curing Technology [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1939-1948. |
| [3] | FAN Dingqiang, LYU Xuesen, LU Jianxin, GUO Binglin, POON Chisun. Mechanical Properties and Carbon Sequestration Characteristics of Biochar-Enhanced CO2 Foamed Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(11): 4113-4122. |
| [4] | CHEN Ping, LI Fangbin, XIANG Weiheng, HU Cheng, LIU Jun, WANG Qijie. Effect of Calcium Silicon Ratio on Sintering Behavior and Carbon Sequestration Capacity of Calcium Silicate Mineral Phase [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(1): 297-304. |
| [5] | WANG Yali, ZHAO Xinyu, MENG Wanyou, WANG Menglu, ZHANG Meng. Effect of Cement Paste Mix Sequestration Carbon Dioxide on Cement Properties [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3109-3117. |
| [6] | WANG Yixiao, XU Yaoqun, ZHANG Ang, LIN Xinhao, YANG Manman. Comprehensive Evaluation of Performance and Environmental Impact of Mineralization Curing Alkali Activated Solid Waste Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 977-986. |
| [7] | LI Shuai, ZHOU Fengjiao, TAN Xinyu, ZHANG Bin, LIN Yongquan, TAO Congxi, HUANG Mingjun. Effect of Carbon Dioxide Concentration on Performance of Low-Calcium Carbon Sequestration Cementitious Materials and Its Mechanism [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3109-3116. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||