BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2026, Vol. 45 ›› Issue (1): 112-122.DOI: 10.16552/j.cnki.issn1001-1625.2025.0735
• Cement and Concrete • Previous Articles Next Articles
QIU Junfu1(
), ZHANG Ruifeng1, WANG Zhenghua1, SHU Chunxue1, ZHANG Jiayang1, HE Xinxin2, LI Yuyang1
Received:2025-07-24
Revised:2025-08-18
Online:2026-01-20
Published:2026-02-10
CLC Number:
QIU Junfu, ZHANG Ruifeng, WANG Zhenghua, SHU Chunxue, ZHANG Jiayang, HE Xinxin, LI Yuyang. Effect of Raw Material Molar Ratio on Macro-Properties of Modified Magnesium Oxysulfate Cementitious[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 112-122.
| Material | Mass fraction/% | |||||||
|---|---|---|---|---|---|---|---|---|
| MgO | SiO2 | CaO | Al2O3 | Fe2O3 | Other | α-MgO | Loss on ignition | |
| MgO | 87.51 | 6.71 | 3.70 | 0.74 | 0.70 | 0.64 | 62.80 | 6.75 |
| T/CECS 10397—2024 | ≥50.00 | f-CaO≤5.00 | ≥30.00 | ≤25.00 | ||||
Table 1 Chemical composition of raw materials
| Material | Mass fraction/% | |||||||
|---|---|---|---|---|---|---|---|---|
| MgO | SiO2 | CaO | Al2O3 | Fe2O3 | Other | α-MgO | Loss on ignition | |
| MgO | 87.51 | 6.71 | 3.70 | 0.74 | 0.70 | 0.64 | 62.80 | 6.75 |
| T/CECS 10397—2024 | ≥50.00 | f-CaO≤5.00 | ≥30.00 | ≤25.00 | ||||
| Sample | Content/g | ||||
|---|---|---|---|---|---|
| MgO | MgSO4·7H2O | H2O | Citric acid | Standard sand | |
| M8H19 | 450.0 | 217.2 | 190.8 | 2.25 | 1 350 |
| M8H18 | 450.0 | 217.2 | 174.9 | 2.25 | 1 350 |
| M8H17 | 450.0 | 217.2 | 159.0 | 2.25 | 1 350 |
| M11H20 | 450.0 | 158.0 | 150.3 | 2.25 | 1 350 |
| M10H20 | 450.0 | 173.8 | 165.3 | 2.25 | 1 350 |
| M9H20 | 450.0 | 193.1 | 183.7 | 2.25 | 1 350 |
| M8H20 | 450.0 | 217.2 | 206.7 | 2.25 | 1 350 |
| M7H20 | 450.0 | 248.3 | 236.2 | 2.25 | 1 350 |
Table 2 Mix proportion of modified magnesium oxysulfate cementitious with different oxygen-sulfur ratios and water-sulfur ratios
| Sample | Content/g | ||||
|---|---|---|---|---|---|
| MgO | MgSO4·7H2O | H2O | Citric acid | Standard sand | |
| M8H19 | 450.0 | 217.2 | 190.8 | 2.25 | 1 350 |
| M8H18 | 450.0 | 217.2 | 174.9 | 2.25 | 1 350 |
| M8H17 | 450.0 | 217.2 | 159.0 | 2.25 | 1 350 |
| M11H20 | 450.0 | 158.0 | 150.3 | 2.25 | 1 350 |
| M10H20 | 450.0 | 173.8 | 165.3 | 2.25 | 1 350 |
| M9H20 | 450.0 | 193.1 | 183.7 | 2.25 | 1 350 |
| M8H20 | 450.0 | 217.2 | 206.7 | 2.25 | 1 350 |
| M7H20 | 450.0 | 248.3 | 236.2 | 2.25 | 1 350 |
| Sample | Mass fraction/% | Rwp/% | ||||
|---|---|---|---|---|---|---|
| 5·1·7 phase | Mg(OH)2 | MgO | SiO2 | MgCO3 | ||
| M8H17 | 93.9 | 0 | 4.7 | 1.0 | 0.4 | 7.26 |
| M8H18 | 91.8 | 0.7 | 4.8 | 1.0 | 1.7 | 5.13 |
| M8H19 | 90.8 | 2.8 | 2.4 | 1.8 | 2.2 | 8.85 |
| M8H20 | 89.9 | 4.9 | 2.4 | 0.8 | 2.0 | 5.86 |
Table 3 Semi-quantitative analysis of magnesium oxysulfate cementitious paste with different water-sulfur ratios
| Sample | Mass fraction/% | Rwp/% | ||||
|---|---|---|---|---|---|---|
| 5·1·7 phase | Mg(OH)2 | MgO | SiO2 | MgCO3 | ||
| M8H17 | 93.9 | 0 | 4.7 | 1.0 | 0.4 | 7.26 |
| M8H18 | 91.8 | 0.7 | 4.8 | 1.0 | 1.7 | 5.13 |
| M8H19 | 90.8 | 2.8 | 2.4 | 1.8 | 2.2 | 8.85 |
| M8H20 | 89.9 | 4.9 | 2.4 | 0.8 | 2.0 | 5.86 |
| Sample | Mass fraction/% | Rwp/% | ||||
|---|---|---|---|---|---|---|
| 5·1·7 phase | Mg(OH)2 | MgO | SiO2 | MgCO3 | ||
| M7H20 | 97.2 | 0 | 1.0 | 0.4 | 1.4 | 8.92 |
| M8H20 | 89.9 | 4.9 | 2.4 | 0.8 | 2.0 | 5.86 |
| M9H20 | 86.8 | 5.6 | 4.8 | 1.2 | 1.6 | 7.18 |
| M10H20 | 85.8 | 6.3 | 6.1 | 0.8 | 1.0 | 6.16 |
| M11H20 | 81.5 | 7.1 | 8.7 | 1.2 | 1.5 | 5.44 |
Table 4 Semi-quantitative analysis of magnesium oxysulfate cementitious paste with different oxygen-sulfur ratios
| Sample | Mass fraction/% | Rwp/% | ||||
|---|---|---|---|---|---|---|
| 5·1·7 phase | Mg(OH)2 | MgO | SiO2 | MgCO3 | ||
| M7H20 | 97.2 | 0 | 1.0 | 0.4 | 1.4 | 8.92 |
| M8H20 | 89.9 | 4.9 | 2.4 | 0.8 | 2.0 | 5.86 |
| M9H20 | 86.8 | 5.6 | 4.8 | 1.2 | 1.6 | 7.18 |
| M10H20 | 85.8 | 6.3 | 6.1 | 0.8 | 1.0 | 6.16 |
| M11H20 | 81.5 | 7.1 | 8.7 | 1.2 | 1.5 | 5.44 |
| [1] | QIN L, GAO X J, LI W G, et al. Modification of magnesium oxysulfate cement by incorporating weak acids[J]. Journal of Materials in Civil Engineering, 2018, 30(9): 04018209. |
| [2] | 韩 猛. 大掺量钢渣硫氧镁水泥性能研究[D]. 鞍山: 辽宁科技大学, 2023. |
| HAN M. Study on properties of magnesium oxysulfate cement with high content of steel slag[D]. Anshan: University of Science and Technology Liaoning, 2023 (in Chinese). | |
| [3] |
WU C Y, ZHANG H F, YU H F. Preparation and properties of modified magnesium oxysulfate cement derived from waste sulfuric acid[J]. Advances in Cement Research, 2016, 28(3): 178-188.
DOI URL |
| [4] | WU C Y, YU H F, DONG J M, et al. Effects of material ratio, fly ash, and citric acid on magnesium oxysulfate cement[J]. ACI Materials Journal, 2014, 111(3): 291-297. |
| [5] | 张晓闯, 陈 波, 王雄锋, 等. 改性剂和矿物掺合料对硫氧镁水泥耐水性的影响研究进展[J]. 水利水电技术(中英文), 2023, 54(8): 188-196. |
| ZHANG X C, CHEN B, WANG X F, et al. Study on effect of modifier and mineral admixture on water resistance of magnesium oxysulfate cement-a short review[J]. Water Resources and Hydropower Engineering, 2023, 54(8): 188-196 (in Chinese). | |
| [6] | ZHANG N, YU H F, MA H Y, et al. The phase composition of the MgO-MgSO4-H2O system and mechanisms of chemical additives[J]. Composites Part B: Engineering, 2022, 247: 110328. |
| [7] | 刘冲昊, 岳雪涛, 翟庆振, 等. 活性MgO含量对改性硫氧镁水泥强度的影响及机理分析[J]. 混凝土与水泥制品, 2023(7): 18-22. |
| LIU C H, YUE X T, ZHAI Q Z, et al. Effect and mechanism analysis of active MgO content on the strength of modified magnesium thioxide cement[J]. China Concrete and Cement Products, 2023(7): 18-22 (in Chinese). | |
| [8] |
LI Z G, JI Z S. Effect of molar ratios on compressive strength of modified magnesium oxysulfate cement[J]. International Journal of Hybrid Information Technology, 2015, 8(6): 87-94.
DOI URL |
| [9] | 王爱国, 楚英杰, 徐海燕, 等. 碱式硫酸镁水泥的研究进展及性能提升技术[J]. 材料导报, 2020, 34(13): 13091-13099. |
| WANG A G, CHU Y J, XU H Y, et al. Research progress and performance improvement technology of basic magnesium sulfate cement[J]. Materials Reports, 2020, 34(13): 13091-13099 (in Chinese). | |
| [10] | 吴成友, 苗 梦, 余红发. MgO活性和摩尔比对碱式硫酸镁水泥强度的影响机理[J]. 建筑材料学报, 2022, 25(4): 360-366. |
| WU C Y, MIAO M, YU H F. Effect of MgO activity and molar ratio on strength of basic magnesium sulfate cement and its mechanism[J]. Journal of Building Materials, 2022, 25(4): 360-366 (in Chinese). | |
| [11] | 中国工程建设标准化协会. 硫氧镁基胶凝材料: T/ CECS 10397—2024[S]. 北京: 中国标准出版社, 2024. |
| China Engineering Construction Standardization Association. Magnesium sulfate-based cementitious materials: T/ CECS 10397—2024[S]. Beijing: China Standards Press, 2024 (in Chinese). | |
| [12] | 国家市场监督管理总局, 国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021. |
| State Administration for Market Regulation, National Standardization Administration. Strength test method of cement sand (ISO method): GB/T 17671—2021[S]. Beijing: China Standard Press, 2021 (in Chinese). | |
| [13] | 国家市场监督管理总局, 国家标准化管理委员会. 建筑保温砂浆: GB/T 20473—2021[S]. 北京: 中国标准出版社, 2021. |
| State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Building thermal insulation mortar: GB/T 20473—2021[S]. Beijing: China Standards Press, 2021 (in Chinese). | |
| [14] | 吴成友. 碱式硫酸镁水泥的基本理论及其在土木工程中的应用技术研究[D]. 西宁: 中国科学院研究生院(青海盐湖研究所), 2014. |
| WU C Y. Basic theory of basic magnesium sulfate cement and its application technology in civil engineering[D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2014 (in Chinese). | |
| [15] | 郑宇浩. 硫氧镁水泥改性及耐久性的热力学机理研究[D]. 南京: 东南大学, 2023. |
| ZHENG Y H. Study on thermodynamic mechanism of modification and durability of magnesium oxysulfate cement[D]. Nanjing: Southeast University, 2023 (in Chinese). | |
| [16] | INDIA B C U, KRISHNA V, KUMAR R. Water to cement ratio: a simple and effective approach to control plastic and drying shrinkage in concrete[C]// Sustainable Construction Materials and Technologies (SCMT). Coventry University, 2016: 1389-1396. |
| [17] | 姜黎黎, 刘江武, 董文俊, 等. 柠檬酸掺量对硫氧镁水泥耐水性的影响[J]. 硅酸盐通报, 2016, 35(12): 4093-4096. |
| JIANG L L, LIU J W, DONG W J, et al. Influence of citric acid addition on water resistance of magnesium oxysulfate cement[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 4093-4096 (in Chinese). | |
| [18] |
GUO T, WANG H F, YANG H J, et al. The mechanical properties of magnesium oxysulfate cement enhanced with 517 phase magnesium oxysulfate whiskers[J]. Construction and Building Materials, 2017, 150: 844-850.
DOI URL |
| [19] | 巴明芳, 马哲洋, 纪璐鑫, 等. 不同摩尔比对改性硫氧镁水泥基材料力学性能、变形行为的影响及机理研究[J/OL]. 建筑材料学报, 1-14 ( 2024-01-16) [ 2025-08-10]. https://link.cnki.net/urlid/31.1764.TU.20240116.1349.002. |
| BA M F, MA Z Y, JI L X, et al. Study on the influence of different molar ratios on mechanical properties, deformation behavior and mechanism of modified magnesium oxysulfate cement-based materials[J/OL]. Journal of Building Materials, 1-14 ( 2024-01-16) [ 2025-08-10]. https://link.cnki.net/urlid/31.1764.TU.20240116.1349.002 (in Chinese). | |
| [20] | DU C. A review of magnesium oxide in concrete[J]. Concrete international, 2005, 27(12): 45-50. |
| [21] | 郑安然, 詹炳根, 杨咏三. 氧硫比与水硫比对硫氧镁胶凝材料性能的影响[J]. 合肥工业大学学报(自然科学版), 2020, 43(10): 1378-1383. |
| ZHENG A R, ZHAN B G, YANG Y S. Influence of mass ratio of MgO to MgSO4 and H2O to MgSO4 on the properties of magnesium oxysulfate cementitious material[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(10): 1378-1383 (in Chinese). | |
| [22] |
WANG N, YU H F, BI W L, et al. Effects of sodium citrate and citric acid on the properties of magnesium oxysulfate cement[J]. Construction and Building Materials, 2018, 169: 697-704.
DOI URL |
| [23] |
CHEN X Y, WANG S Y, ZHOU Y X, et al. Improved low-carbon magnesium oxysulfate cement pastes containing boric acid and citric acid[J]. Cement and Concrete Composites, 2022, 134: 104813.
DOI URL |
| [24] |
MIAO M, WU C Y, TAN Y S, et al. Mechanistic study of the effects of magnesia reactivity on setting and hardening of basic magnesium sulfate cement[J]. Journal of Advanced Concrete Technology, 2020, 18(11): 678-688.
DOI URL |
| [25] |
GUAN Y, CHANG J, HU Z Q, et al. Performance of magnesium hydroxide gel at different alkali concentrations and its effect on properties of magnesium oxysulfate cement[J]. Construction and Building Materials, 2022, 348: 128669.
DOI URL |
| [26] | 吴成友, 邢赛南, 张吾渝, 等. 碱式硫酸镁水泥水化规律研究[J]. 功能材料, 2016, 47(11): 11120-11124+11130. |
| WU C Y, XING S N, ZHANG W Y, et al. Study on hydration mechanism of basic magnesium sulfate cement[J]. Journal of Functional Materials, 2016, 47(11): 11120-11124+11130 (in Chinese). | |
| [27] | 马宏宇, 姬仁林, 马亚丽, 等. 有机酸调控硫氧镁水泥的水化进程[J]. 硅酸盐学报, 2025, 53(2): 396-405. |
| MA H Y, JI R L, MA Y L, et al. Organic acids modulate the hydration process of magnesium sulphide cements[J]. Journal of the Chinese Ceramic Society, 2025, 53(2): 396-405 (in Chinese). | |
| [28] | 烟 卫, 刘 昱, 李艳苹, 等. X射线衍射法钾混盐无标样定量相分析[J]. 理化检验-化学分册, 2014, 50(4): 413-416. |
| YAN W, LIU Y, LI Y P, et al. Quantitative phase analysis of potassium mixed salt by XRD without using reference standard[J]. Physical Testing and Chemical Analysis (Part B (Chemical Analysis)), 2014, 50(4): 413-416 (in Chinese). | |
| [29] |
WU C Y, CHEN W H, ZHANG H F, et al. The hydration mechanism and performance of Modified magnesium oxysulfate cement by tartaric acid[J]. Construction and Building Materials, 2017, 144: 516-524.
DOI URL |
| [30] | 文 静, 余红发, 吴成友, 等. 氯氧镁水泥水化历程的影响因素及水化动力学[J]. 硅酸盐学报, 2013, 41(5): 588-596. |
| WEN J, YU H F, WU C Y, et al. Hydration kinetic and influencing parameters in hydration process of magnesium oxychloride cement[J]. Journal of the Chinese Ceramic Society, 2013, 41(5): 588-596 (in Chinese). |
| [1] | LI Xiao-hui;TANG Ya-kun;GAO Sha-sha;WANG Lei;LIU Lang. Calcining Process of Light-burned Magnesia Based on Xinjiang Jianshan Magnesite [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(1): 73-79. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||