[1] 中国煤炭工业协会. 2023煤炭行业发展年度报告[R].北京: 中国煤炭工业协会, 2024. China National Coal Association. 2023 coal industry development annual report[R].Beijing: China National Coal Association, 2024 (in Chinese). [2] 杨 越. 我国煤矸石堆存现状及其大宗量综合利用途径[J].中国资源综合利用, 2014, 32(6): 18-22. YANG Y. Coal gangue stacked and its comprehensive utilization[J].China Resources Comprehensive Utilization, 2014, 32(6): 18-22 (in Chinese). [3] LI X Y, SHAO J H, ZHENG J Q, et al. Fabrication and application of porous materials made from coal gangue: a review[J].International Journal of Applied Ceramic Technology, 2023, 20(4): 2099-2124. [4] SUN D D, TAY J H, CHEONG H K, et al. Recovery of heavy metals and stabilization of spent hydrotreating catalyst using a glass-ceramic matrix[J].Journal of Hazardous Materials, 2001, 87(1/2/3): 213-223. [5] XUE Q, LU H J, ZHAO Y, et al. The metal ions release and microstructure of coal gangue corroded by acid-based chemical solution[J].Environmental Earth Sciences, 2014, 71(7): 3235-3244. [6] 张博超, 童 辉, 龙雪颖, 等. 煤矸石固废高值化利用研究现状与进展[J/OL].洁净煤技术, 1-15 (2023-05-25)[2024-08-25].https://link.cnki.net/urlid/11.3676.td.20230524.1257.002. ZHANG B C, TONG H, LONG X Y, et al. Research Status and Progress of High-value Utilization of Coal Gangue Solid Waste[J/OL].Clean Coal Technology, 1-15 (2023-05-25)[2024-08-25].https://link.cnki.net/urlid/11.3676.td.20230524.1257.002 (in Chinese). [7] 王晓栋, 张 玥, 陈 松, 等. 煤矸石资源化利用的研究进展[J].化学工程师, 2021, 35(4): 68-69+63. WANG X D, ZHANG Y, CHEN S, et al. Current situation research on resource utilization of coal gangue[J].Chemical Engineer, 2021, 35(4): 68-69+63 (in Chinese). [8] 郝临山, 彭建喜, 董秀桃. 大同高岭岩煤矸石资源的矿物学研究[J].山西大同大学学报(自然科学版), 2007, 23(4): 46-49. HAO L S, PENG J X, DONG X T. Mineralogy research of gangue resource of Datong Kaolin[J].Journal of Shanxi Datong University (Natural Science), 2007, 23(4): 46-49 (in Chinese). [9] 刘钦甫, 杨晓杰, 张鹏飞, 等. 中国煤系高岭岩(土)资源成矿机理与开发利用[J].矿物学报, 2002, 22(4): 359-364. LIU Q F, YANG X J, ZHANG P F, et al. Mineralization mechanism of kaolinitic rocks in China's coal measures, and their development and utilization[J].Acta Mineralogica Sinica, 2002, 22(4): 359-364 (in Chinese). [10] 赖凡冰, 汪永清, 龙清华, 等. 建筑陶瓷矿物原料的性质及流变性能研究[J].中国陶瓷, 2023, 59(12): 66-75. LAI F B, WANG Y Q, LONG Q H, et al. Study on the properties and rheological behaviors of mineral raw materials for architecture ceramics[J].China Ceramics, 2023, 59(12): 66-75 (in Chinese). [11] 程金树, 李 宏, 汤李缨, 等. 微晶玻璃[M].北京: 化学工业出版社, 2006: 1-2. CHENG J S, LI H, TANG L Y, et al. Glass-ceramics[M].Beijing: Chemical Industry Press, 2006: 1-2 (in Chinese). [12] 邱建荣, 周时凤. 意外造就的先进材料: 微晶玻璃[J].硅酸盐学报, 2024, 52(8): 2453-2454. QIU J R, ZHOU S F. Glass ceramic: advanced material originated from an accident[J].Journal of the Chinese Ceramic Society, 2024, 52(8): 2453-2454 (in Chinese). [13] WEY M Y, LIU K Y, TSAI T H, et al. Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln[J].Journal of Hazardous Materials, 2006, 137(2): 981-989. [14] ZHANG Y S, SUN W, CHEN Q L, et al. Synthesis and heavy metal immobilization behaviors of slag based geopolymer[J].Journal of Hazardous Materials, 2007, 143(1/2): 206-213. [15] 施麟芸, 徐玉华, 魏 琦. Fe2O3对铜尾矿基CaO-MgO-Al2O3-SiO2微晶玻璃析晶行为的影响[J].硅酸盐通报, 2022, 41(11): 3844-3851. SHI L Y, XU Y H, WEI Q. Effect of Fe2O3 on crystallization behavior of CaO-MgO-Al2O3-SiO2 glass-ceramics based on copper tailings[J].Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3844-3851 (in Chinese). [16] 孙 涛, 刘立强, 丁 聪, 等. Fe2O3对MgO-Al2O3-SiO2微晶玻璃体系微观结构的影响[J].中国陶瓷工业, 2022, 29(2): 8-12. SUN T, LIU L Q, DING C, et al. Effect of Fe2O3 on microstructure of MgO-Al2O3-SiO2 glass ceramics[J].China Ceramic Industry, 2022, 29(2): 8-12 (in Chinese). [17] 李丹阳, 许德平, 赵心霓, 等. 利用粉煤灰制备透辉石微晶玻璃的研究[J].煤炭加工与综合利用, 2022(11): 96-100. LI D Y, XU D P, ZHAO X N, et al. Study on preparation of diopside glass-ceramics from fly ash[J].Coal Processing & Comprehensive Utilization, 2022(11): 96-100 (in Chinese). [18] 王一帆, 王艺慈, 王瑞鑫, 等. 矿渣微晶玻璃热处理制度的优化[J].中国陶瓷, 2022, 58(9): 40-44. WANG Y F, WANG Y C, WANG R X, et al. Optimization of heat treatment system of slag glass-ceramics[J].China Ceramics, 2022, 58(9): 40-44 (in Chinese). [19] 王伟杰. 黄磷炉渣制备高钙微晶玻璃基础研究[D].昆明: 昆明理工大学, 2020: 13-59. WANG W J. Basic research on preparation of high-calcium glass-ceramics microcrystalline glass from yellow phosphorus slag[D].Kunming: Kunming University of Science and Technology, 2020: 13-59 (in Chinese). [20] ALIZADEH P, YEKTA B E, GERVEI A. Effect of Fe2O3 addition on the sinterability and machinability of glass-ceramics in the system MgO-CaO-SiO2-P2O5[J].Journal of the European Ceramic Society, 2004, 24(13): 3529-3533. [21] MUKHERJEE D P, DAS S K. The influence of TiO2 content on the properties of glass ceramics: crystallization, microstructure and hardness[J].Ceramics International, 2014, 40(3): 4127-4134. [22] 程宏飞. 高岭石插层、剥片及其在橡胶复合材料中应用研究[D].北京: 中国矿业大学(北京), 2011. CHENG H F. Study on kaolinite intercalation, flaking and its application in rubber composites[D].Beijing: China University of Mining & Technology (Beijing), 2011 (in Chinese). [23] LEDOUX R L, WHITE J L. Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide, and urea[J].Journal of Colloid and Interface Science, 1966, 21(2): 127-152. [24] BALAN E, SAITTA A M, MAURI F, et al. First-principles modeling of the infrared spectrum of kaolinite[J].American Mineralogist, 2001, 86(11/12): 1321-1330. [25] FROST R L, HORVÁTH E, MAKÓ É, et al. Modification of low- and high-defect kaolinite surfaces: implications for kaolinite mineral processing[J].Journal of Colloid and Interface Science, 2004, 270(2): 337-346. [26] SEIFI S, DIATTA-DIEME M, BLANCHART P, et al. Kaolin intercalated by urea. Ceramic applications[J].Construction and Building Materials, 2016, 113: 579-585. [27] WU S K, HE M Y, YANG M, et al. Near-infrared spectroscopic study of OH stretching modes in kaolinite and dickite[J].Crystals, 2022, 12(7): 907. [28] SAIKIA B J, PARTHASARATHY G. Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, northeastern India[J].Journal of Modern Physics, 2010, 1(4): 206-210. [29] PROST R, DAMEME A, HUARD E, et al. Infrared study of structural OH in kaolinite, dickite, nacrite, and poorly crystalline kaolinite at 5 to 600 K[J].Clays and Clay Minerals, 1989, 37(5): 464-468. [30] 张圆圆, 杨凤玲, 程芳琴. 煤矸石中高岭石的脱羟基特点及动力学研究[J].煤炭转化, 2015, 38(3): 78-81. ZHANG Y Y, YANG F L, CHENG F Q. Study on kaolinite dehydroxylation characteristic and kinetics in coal gangue[J].Coal Conversion, 2015, 38(3): 78-81 (in Chinese). [31] LAN S, GUO C Y, ZHOU W Z, et al. Engineering medium-range order and polyamorphism in a nanostructured amorphous alloy[J].Communications Physics, 2019, 2: 117. [32] PENG F, LIANG K M, HU A M. Nano-crystal glass-ceramics obtained from high alumina coal fly ash[J].Fuel, 2005, 84(4): 341-346. [33] 肖汉宁, 刘 洋, 时海霞. 高炉渣含量与热处理制度对矿渣微晶玻璃性能的影响[J].中山大学学报(自然科学版), 2003, 42(增刊1): 107-110. XIAO H N, LIU Y, SHI H X. Effects of the content of blast slag and heat-treatment parameters on the properties of slag glass-ceramics[J].Acta Scientiarum Naturalium Universitatis Sunyatseni, 2003, 42(supplement 1): 107-110 (in Chinese). [34] KARAMANOV A, PELINO M. Induced crystallization porosity and properties of sintereds diopside and wollastonite glass-ceramics[J].Journal of the European Ceramic Society, 2008, 28(3): 555-562. [35] 孙睿杰, 何 峰, 王立格, 等. TiO2含量对高炉渣微晶玻璃结构和性能的影响[J].硅酸盐通报, 2019, 38(8): 2542-2548. SUN R J, HE F, WANG L G, et al. Influence of TiO2 content on structure and properties of blast furnace slag glass-ceramics[J].Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2542-2548 (in Chinese). [36] 谢春帅, 贵永亮, 王亚文, 等. TiO2和CaF2对高炉渣基础玻璃微观结构和高温粘度的影响[J].陶瓷学报, 2016, 37(5): 516-520. XIE C S, GUI Y L, WANG Y W, et al. Effect of TiO2 and CaF2 on the microstructure and high-temperature viscosity of parent glass from blast furnace slag[J].Journal of Ceramics, 2016, 37(5): 516-520 (in Chinese). [37] AKIN I, GOLLER G. Effect of TiO2 addition on crystallization and machinability of potassium mica and fluorapatite glass ceramics[J].Journal of Materials Science, 2007, 42(3): 883-888. [38] OHSATO H, VARGHESE J, VAHERA T, et al. Micro/millimeter-wave dielectric indialite/cordierite glass-ceramics applied as LTCC and direct casting substrates: current status and prospects[J].Journal of the Korean Ceramic Society, 2019, 56(6): 526-533. [39] OHSATO H, VARGHESE J, KAN A, et al. Volume crystallization and microwave dielectric properties of indialite/cordierite glass by TiO2 addition[J].Ceramics International, 2021, 47(2): 2735-2742. [40] 余 炜, 梁新辉, 李书志, 等. 二氧化钛对镁铝硅微晶玻璃析晶行为与性能的影响[J].硅酸盐学报, 2022, 50(5): 1283-1291. YU W, LIANG X H, LI S Z, et al. Effect of titanium dioxide on crystallization behavior and properties of MgO-Al2O3-SiO2 glass-ceramics[J].Journal of the Chinese Ceramic Society, 2022, 50(5): 1283-1291 (in Chinese). [41] 中华人民共和国工业和信息化部. 工业用微晶板材: JC/T 2097—2011[S].北京: 中国建材工业出版社, 2012. Ministry of Industry and Information Technology of the People's Republic of China. Glass-ceramics plate for industrial application: JC/T 2097—2011[S].Beijing: China Building Materials Industry Press, 2012 (in Chinese) |