[1] 袁 波, 田 原. 混凝土结构加固修复业技术现状与发展对策[J]. 建筑技术开发, 2020, 47(23): 137-139. YUAN B, TIAN Y. Technology status and development countermeasures of concrete structure reinforcement and repair industry[J]. Building Technology Development, 2020, 47(23): 137-139 (in Chinese). [2] KRYVENKO P, RUDENKO I, SIKORA P, et al. Alkali-activated cements as sustainable materials for repairing building construction: a review[J]. Journal of Building Engineering, 2024, 90: 109399. [3] 李 艳, 赵一多, 周明杨. ECC修复既有RC梁界面粘结与受弯性能试验研究[J]. 硅酸盐通报, 2019, 38(9): 2794-2800. LI Y, ZHAO Y D, ZHOU M Y. Experimental study on interfacial bonding and flexural properties of reinforced concrete beams repaired with ECC[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(9): 2794-2800 (in Chinese). [4] CAVALETT O, WATANABE M D B, VOLDSUND M, et al. Paving the way for sustainable decarbonization of the European cement industry[J]. Nature Sustainability, 2024, 7: 568-580. [5] HASSAN A, ARIF M, SHARIQ M. A review of properties and behaviour of reinforced geopolymer concrete structural elements: a clean technology option for sustainable development[J]. Journal of Cleaner Production, 2020, 245: 118762. [6] 张品乐, 曾靖渊, 胡 静, 等. 钢-PVA混杂纤维水泥基复合材料抗压力学性能及经济性研究[J]. 硅酸盐通报, 2023, 42(11): 3827-3835. ZHANG P L, ZENG J Y, HU J, et al. Compressive mechanical properties and economic performance of steel-PVA hybrid fiber cement-based composites[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 3827-3835 (in Chinese). [7] 石玉成, 李贺东. 国产PVA/PE纤维混杂超高韧性水泥基复合材料拉压性能试验研究[J]. 新型建筑材料, 2024, 51(4): 111-115. SHI Y C, LI H D. Experimental study on the tensile and compressive properties of domestic PVA/PE fibers hybrid reinforced ultra high toughness cementitious composite[J]. New Building Materials, 2024, 51(4): 111-115 (in Chinese). [8] NGUYȆN H H, NGUYȆN P H, LUONG Q H, et al. Mechanical and autogenous healing properties of high-strength and ultra-ductility engineered geopolymer composites reinforced by PE-PVA hybrid fibers[J]. Cement and Concrete Composites, 2023, 142: 105155. [9] 张品乐, 朱昊天, 胡 静, 等. 高性价比混杂纤维工程水泥基复合材料的力学性能研究[J]. 硅酸盐通报, 2023, 42(11): 3816-3826. ZHANG P L, ZHU H T, HU J, et al. Mechanical properties of high cost performance hybrid fiber engineered cementitious composites[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 3816-3826 (in Chinese). [10] HU B, LI Y, LIU Y. Dynamic slant shear bond behavior between new and old concrete[J]. Construction and Building Materials, 2020, 238: 117779. [11] 任 亮, 方 蕈, 王 凯, 等. 超高性能混凝土与水泥基材料界面粘结性研究进展[J]. 硅酸盐通报, 2019, 38(7): 2087-2094. REN L, FANG X, WANG K, et al. Research progress on interface bond behavior between ultra high performance concrete and cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2087-2094 (in Chinese). [12] ZANOTTI C, BORGES P H R, BHUTTA A, et al. Bond strength between concrete substrate and metakaolin geopolymer repair mortar: effect of curing regime and PVA fiber reinforcement[J]. Cement and Concrete Composites, 2017, 80: 307-316. [13] DIAB A M, ABD ELMOATY A E M, TAG ELDIN M R. Slant shear bond strength between self compacting concrete and old concrete[J]. Construction and Building Materials, 2017, 130: 73-82. [14] GAO Z, ZHANG P, WANG J, et al. Interfacial properties of geopolymer mortar and concrete substrate: effect of polyvinyl alcohol fiber and nano-SiO2 contents[J]. Construction and Building Materials, 2022, 315: 125735. [15] LING Y F, WANG K J, LI W G, et al. Effect of slag on the mechanical properties and bond strength of fly ash-based engineered geopolymer composites[J]. Composites Part B: Engineering, 2019, 164: 747-757. [16] PUERTAS F, PALACIOS M, MANZANO H, et al. A model for the C-A-S-H gel formed in alkali-activated slag cements[J]. Journal of the European Ceramic Society, 2011, 31(12): 2043-2056. [17] NĚMEČEK J, ŠMILAUER V, KOPECKÝ L. Nanoindentation characteristics of alkali-activated aluminosilicate materials[J]. Cement and Concrete Composites, 2011, 33(2): 163-170. [18] ZHONG H, ZHANG M Z. Engineered geopolymer composites: a state-of-the-art review[J]. Cement and Concrete Composites, 2023, 135: 104850. [19] 高剑平, 潘景龙, 王雨光. 检验新旧混凝土粘结强度合适的试件形式[J]. 哈尔滨建筑大学学报, 2001(2): 32-35. GAO J P, PAN J L, WANG Y G. Specimen for testing bond strength between fresh and hardened concrete[J]. Journal of Harbin University of Civil Engineering and Architecture, 2001(2): 32-35 (in Chinese). [20] ZANOTTI C, BANTHIA N, PLIZZARI G. Towards sustainable repairs: substrate-repair interface mode-I fracture analysis[J]. International Journal of Sustainable Materials and Structural Systems, 2014, 1(3): 265. [21] LIM Y M, LI V C. Durable repair of aged infrastructures using trapping mechanism of engineered cementitious composites[J]. Cement and Concrete Composites, 1997, 19(4): 373-385. [22] LI F P, YANG Z M, CHEN D F, et al. Research on mechanical properties and micro-mechanism of engineering geopolymers composites (EGCs) incorporated with modified MWCNTs[J]. Construction and Building Materials, 2021, 303: 124516. [23] TIAN J, WU X W, WANG W W, et al. Experimental study and mechanics model of ECC-to-concrete bond interface under tensile loading[J]. Composite Structures, 2022, 285: 115203. [24] WANG B G, FENG H, HUANG H, et al. Bonding properties between fly ash/slag-based engineering geopolymer composites and concrete[J]. Materials, 2023, 16(12): 4232. [25] AUSTIN S, ROBINS P, PAN Y G. Shear bond testing of concrete repairs[J]. Cement and Concrete Research, 1999, 29(7): 1067-1076. [26] KUMAR S, SEKHAR DAS C, LAO J C, et al. Effect of sand content on bond performance of engineered geopolymer composites (EGC) repair material[J]. Construction and Building Materials, 2022, 328: 127080. |