[1] QIANG R, DU Y C, ZHAO H T, et al. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption[J]. Journal of Materials Chemistry A, 2015, 3(25): 13426-13434. [2] CHEN Y, QIANG R, SHAO Y L, et al. Fe3C/Fe implanted hierarchical porous carbon foams for lightweight and broadband microwave absorption[J]. Diamond and Related Materials, 2024, 142: 110738. [3] LÜ Y, WANG Y, LI H, et al. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties[J]. ACS Appl Mater Interfaces, 2015, 7(24): 13604-13611. [4] LEI L, YAO Z J, ZHOU J T, et al. Hydrangea-like Ni/NiO/C composites derived from metal-organic frameworks with superior microwave absorption[J]. Carbon, 2021, 173: 69-79. [5] 李 茹, 娄志超, 顾水祥, 等. 利用竹粉制备吸波磁性炭[J]. 林业工程学报, 2021, 35(1): 112-120. LI R, LOU Z C, GU S X, et al. Preparation of magnetic carbon with microwave absorption property using bamboo powder[J]. Journal of Forestry Engineering, 2021, 35(1): 112-120 (in Chinese). [6] 杨 喜, 曹 敏, 简 煜, 等. 多孔木炭/Fe3O4复合吸波材料的制备与性能[J]. 复合材料学报, 2022, 39(10): 4590-4601. YANG X, CAO M, JIAN Y, et al. Preparation and microwave absorption properties of porous charcoal/Fe3O4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4590-4601 (in Chinese). [7] SONG W, ZHAO Q M, WANG Z J. Magnetic biomass porous carbon@Co/CoO nanocomposite for highly efficient microwave absorption[J]. Materials Research Bulletin, 2023, 167: 112371. [8] LIU Y, CHEN Z, XIE W H, et al. In-situ growth and graphitization synthesis of porous Fe3O4/carbon fibre composites derived from biomass as lightweight microwave absorber[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5318-5328. [9] LI Z J, LIN H, DING S Q, et al. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon[J]. Carbon, 2020, 167: 148-159. [10] LIN R J, LI A, LU L B, et al. Preparation of bulk sodium carboxymethyl cellulose aerogels with tunable morphology[J]. Carbohydrate Polymers, 2015, 118: 126-132. [11] PIMENTA M A, DRESSELHAUS G, DRESSELHAUS M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Physical Chemistry Chemical Physics, 2007, 9(11): 1276-1291. [12] DING D, WANG Y, LI X D, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption[J]. Carbon, 2017, 111: 722-732. [13] SONG S W, ZHANG A T, CHEN L, et al. A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption[J]. Carbon, 2021, 176: 279-289. [14] QUAN B, XU G Y, LI D R, et al. Incorporation of dielectric constituents to construct ternary heterojunction structures for high-efficiency electromagnetic response[J]. Journal of Colloid and Interface Science, 2017, 498: 161-169. [15] LIU B, LI J H, WANG L F, et al. Ultralight graphene aerogel enhanced with transformed micro-structure led by polypyrrole nano-rods and its improved microwave absorption properties[J]. Composites Part A: Applied Science and Manufacturing, 2017, 97: 141-150. [16] CHE R C, PENG L M, DUAN X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Advanced Materials, 2004, 16(5): 401-405. [17] ZHANG Y N, ZHANG X M, QUAN B, et al. A facile self-template strategy for synthesizing 1D porous Ni@C nanorods towards efficient microwave absorption[J]. Nanotechnology, 2017, 28(11): 115704. [18] XIANG Z, HUANG C, SONG Y M, et al. Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption[J]. Carbon, 2020, 167: 364-377. [19] HUANG W H, QIU Q, YANG X F, et al. Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption[J]. Nano-Micro Letters, 2022, 14(1): 96. [20] WU Z C, YANG Z Q, PEI K, et al. Dandelion-like carbon nanotube assembly embedded with closely separated Co nanoparticles for high-performance microwave absorption materials[J]. Nanoscale, 2020, 12(18): 10149-10157. [21] HU J H, JIAO Z G, HAN X K, et al. Facile synthesis of FeNi nanoparticle-loaded carbon nanocomposite fibers for enhanced microwave absorption performance[J]. Journal of Materials Science & Technology, 2024, 175: 141-152. [22] WU F, LIU Z H, XIU T, et al. Fabrication of ultralight helical porous carbon fibers with CNTs-confined Ni nanoparticles for enhanced microwave absorption[J]. Composites Part B: Engineering, 2021, 215: 108814. [23] LI J, WANG L, ZHANG D, et al. Reduced graphene oxide modified mesoporous FeNi alloy/carbon microspheres for enhanced broadband electromagnetic wave absorbers[J]. Materials Chemistry Frontiers, 2017, 1(9): 1786-1794. [24] DENG Z M, LI Y, ZHANG H B, et al. Lightweight Fe@C hollow microspheres with tunable cavity for broadband microwave absorption[J]. Composites Part B: Engineering, 2019, 177: 107346. |