BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (8): 2961-2974.
Previous Articles Next Articles
SHI Yaoming1,2, LI Dongwei1,2
Received:
2024-01-17
Revised:
2024-02-28
Online:
2024-08-15
Published:
2024-08-12
CLC Number:
SHI Yaoming, LI Dongwei. Immobilization of Electroplating Sludge by Lead-Zinc Smelting Slag-Based Cementitious Material[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2961-2974.
[1] ZENG L H, ZHANG P P, LI J, et al. Study on combined technology of glutathione reduction and alkali solidification of chromium-containing sludge[J]. Ecotoxicology and Environmental Safety, 2022, 247: 114221. [2] SOPHIA A C, SWAMINATHAN K. Assessment of the mechanical stability and chemical leachability of immobilized electroplating waste[J]. Chemosphere, 2005, 58(1): 75-82. [3] CHANGJUTTURAS K, HOY M, HORPIBULSUK S, et al. Solidification and stabilisation of metal plating sludge with fly ash geopolymer[J]. Environmental Geotechnics, 2023, 10(1): 66-75. [4] XIA M, MUHAMMAD F, LI S, et al. Solidification of electroplating sludge with alkali-activated fly ash to prepare a non-burnt brick and its risk assessment[J]. RSC Advances, 2020, 10(8): 4640-4649. [5] 孙双月, 蔡 靖. 利用铅锌冶炼废渣制备碱激发胶凝材料的实验研究[J]. 广东化工, 2016, 43(5): 39-40. SUN S Y, CAI J. Preparation of alkali-activated cementitious materials utilizing lead or zinc smelting slag[J]. Guangdong Chemical Industry, 2016, 43(5): 39-40 (in Chinese). [6] XU D M, FU R B. The mechanistic insights into the leaching behaviors of potentially toxic elements from the indigenous zinc smelting slags under the slag dumping site scenario[J]. Journal of Hazardous Materials, 2022, 437: 129368. [7] XIA M, MUHAMMAD F, ZENG L, et al. Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer[J]. Journal of Cleaner Production, 2019, 209: 1206-1215. [8] ZHANG X, DU M, FANG H, et al. Polymer-modified cement mortars: their enhanced properties, applications, prospects, and challenges[J]. Construction and Building Materials, 2021, 299: 124290. [9] WANG L Y, WANG M J. Removal of heavy metal ions by poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze-thaw method[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2830-2837. [10] SUN J H, SUN G X, ZHAO X X, et al. Ultrafast and efficient removal of Pb(II) from acidic aqueous solution using a novel polyvinyl alcohol superabsorbent[J]. Chemosphere, 2021, 282: 131032. [11] MIRKOVIĆ M, KLJAJEVIĆ L, DOLENEC S, et al. Potential usage of hybrid polymers binders based on fly ash with the addition of PVA with satisfying mechanical and radiological properties[J]. Gels, 2021, 7(4): 270. [12] PEREIRA A P V, VASCONCELOS W L, ORÉFICE R L. Novel multicomponent silicate-poly(vinyl alcohol) hybrids with controlled reactivity[J]. Journal of Non-Crystalline Solids, 2000, 273(1): 180-185. [13] AZIZ T, ULLAH A, FAN H, et al. Recent progress in silane coupling agent with its emerging applications[J]. Journal of Polymers and the Environment, 2021, 29(11): 3427-3443. [14] ZHU K, DUAN Y, WANG F, et al. Silane-modified halloysite/Fe3O4 nanocomposites: simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption[J]. Chemical Engineering Journal, 2017, 311: 236-246. [15] ISTUQUE D B, SORIANO L, AKASAKI J L, et al. Effect of sewage sludge ash on mechanical and microstructural properties of geopolymers based on metakaolin[J]. Construction and Building Materials, 2019, 203: 95-103. [16] LUO S Y, ZHAO S J, ZHANG P P, et al. Co-disposal of MSWI fly ash and lead-zinc smelting slag through alkali-activation technology[J]. Construction and Building Materials, 2022, 327: 127006. [17] ZHANG P, MUHAMMAD F, YU L, et al. Self-cementation solidification of heavy metals in lead-zinc smelting slag through alkali-activated materials[J]. Construction and Building Materials, 2020, 249: 118756. [18] PUERTAS F, MARTINEZ-RAMIREZ S, ALONSO S, et al. Alkali-activated fly ash/slag cements[J]. Cement and Concrete Research, 2000, 30(10): 1625-1632. [19] 张 攀. 碱激发胶凝材料的应用研究进展[J]. 工程技术(文摘版)·建筑, 2016(9): 75. ZHANG P. Research progress on application of alkali-activated cementitious materials[J]. Engineering Technology (Abstract Edition) Construction, 2016(9): 75 (in Chinese). [20] LEE B, KIM G, KIM R, et al. Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash[J]. Construction and Building Materials, 2017, 151: 512-519. [21] PANIAS D, GIANNOPOULOU I P, PERRAKI T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301(1/2/3): 246-254. [22] POUHET R, CYR M, BUCHER R. Influence of the initial water content in flash calcined metakaolin-based geopolymer[J]. Construction and Building Materials, 2019, 201: 421-429. [23] WHITE C E, PROVIS J L, PROFFEN T, et al. The effects of temperature on the local structure of metakaolin-based geopolymer binder: a neutron pair distribution function investigation[J]. Journal of the American Ceramic Society, 2010, 93(10): 3486-3492. [24] CAI J C, JIANG J Y, GAO X, et al. Improving the mechanical properties of fly ash-based geopolymer composites with PVA fiber and powder[J]. Materials, 2022, 15(7): 2363. [25] NIKOLIĆ V, KOMLJENOVIĆ M, DŽUNUZOVIĆ N, et al. The influence of Pb addition on the properties of fly ash-based geopolymers[J]. Journal of Hazardous Materials, 2018, 350: 98-107. [26] WILLIAMS R P, VAN RIESSEN A. Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD[J]. Fuel, 2010, 89(12): 3683-3692. [27] CHEN-TAN N W, VAN RIESSEN A, LY C V, et al. Determining the reactivity of a fly ash for production of geopolymer[J]. Journal of the American Ceramic Society, 2009, 92(4): 881-887. [28] ZHANG S H, ZHU N W, MAO F L, et al. A novel strategy for harmlessness and reduction of copper smelting slags by alkali disaggregation of fayalite (Fe2SiO4) coupling with acid leaching[J]. Journal of Hazardous Materials, 2021, 402: 123791. [29] GUZMÁN-APONTE L, MEJÍA DE GUTIÉRREZ R, MAURY-RAMÍREZ A. Metakaolin-based geopolymer with added TiO2 particles: physicomechanical characteristics[J]. Coatings, 2017, 7(12): 233. [30] JENA S, PANIGRAHI R. Performance assessment of geopolymer concrete with partial replacement of ferrochrome slag as coarse aggregate[J]. Construction and Building Materials, 2019, 220: 525-537. [31] HU S X, ZHONG L L, YANG X J, et al. Synthesis of rare earth tailing-based geopolymer for efficiently immobilizing heavy metals[J]. Construction and Building Materials, 2020, 254: 119273. [32] GAO K, LIN K L, WANG D Y, et al. Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers[J]. Construction and Building Materials, 2014, 53: 503-510. [33] CHRISTIANSEN M B, SØRENSEN M A, SANYOVA J, et al. Characterisation of the rare cadmium chromate pigment in a 19th century tube colour by Raman, FTIR, X-ray and EPR[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2017, 175: 208-214. [34] LEMOUGNA P N, MACKENZIE K J D, JAMESON G N L, et al. The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57Fe Mössbauer spectroscopy study[J]. Journal of Materials Science, 2013, 48(15): 5280-5286. [35] JI Z H, PEI Y S. Immobilization efficiency and mechanism of metal cations (Cd2+, Pb2+ and Zn2+) and anions (AsO3-4 and Cr2O2-7) in wastes-based geopolymer[J]. Journal of Hazardous Materials, 2020, 384: 121290. [36] HUANG X, HUANG T, LI S, et al. Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer[J]. Ceramics International, 2016, 42(8): 9538-9549. [37] 聂 果, 王永杰, 李 军. 环境矿物材料吸附重金属的有机改性研究[J]. 环境科技, 2015, 28(2): 76-80. NIE G, WANG Y J, LI J. The organic modification research of environmental mineral material in adsorption of heavy metal[J]. Environmental Science and Technology, 2015, 28(2): 76-80 (in Chinese). [38] KARUPPAIYAN J, MULLAIMALAR A, JEYALAKSHMI R. Adsorption of dyestuff by nano copper oxide coated alkali metakaoline geopolymer in monolith and powder forms: kinetics, isotherms and microstructural analysis[J]. Environmental Research, 2023, 218: 115002. [39] KANUCHOVA M, KOZAKOVA L, DRABOVA M, et al. Monitoring and characterization of creation of geopolymers prepared from fly ash and metakaolin by X-ray photoelectron spectroscopy method[J]. Environmental Progress & Sustainable Energy, 2015, 34(3): 841-849. [40] JI Z H, PEI Y S. Geopolymers produced from drinking water treatment residue and bottom ash for the immobilization of heavy metals[J]. Chemosphere, 2019, 225: 579-587. [41] SIMONSEN M E, SØNDERBY C, LI Z S, et al. XPS and FT-IR investigation of silicate polymers[J]. Journal of Materials Science, 2009, 44(8): 2079-2088. [42] 张思海. 铜冶炼渣的矿物相与重金属束缚关系及其无害化工艺与机理研究[D]. 广州: 华南理工大学, 2021. ZHANG S H. Study on binding relationship between mineral phases and heavy metals, harmlessness process and mechanism of copper smelting slags[D]. Guangzhou: South China University of Technology, 2021 (in Chinese). [43] NENADOVIĆ S S S, KLJAJEVIĆ L M, IVANOVIĆ M M, et al. Structural and chemical properties of geopolymer gels incorporated with neodymium and samarium[J]. Gels, 2021, 7(4): 195. [44] DING C, ZENG Y W, CAO L L, et al. Hierarchically porous Fe3O4/C nanocomposite microspheres via a CO2 bubble-templated hydrothermal approach as high-rate and high-capacity anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(16): 5898-5908. [45] LI W, WU X, LI S, et al. Magnetic porous Fe3O4/carbon octahedra derived from iron-based metal-organic framework as heterogeneous Fenton-like catalyst[J]. Applied Surface Science, 2018, 436: 252-262. [46] BAGUS P S, NELIN C J, BRUNDLE C R, et al. Combined multiplet theory and experiment for the Fe 2p and 3p XPS of FeO and Fe2O3[J]. The Journal of Chemical Physics, 2021, 154(9): 094709. [47] ZHANG T, WEI S, WATERHOUSE G I N, et al. Chromium (VI) adsorption and reduction by humic acid coated nitrogen-doped magnetic porous carbon[J]. Powder Technology, 2020, 360: 55-64. [48] UPADHYAY J, MISRA S P, IRUSTA S, et al. Oxidation of aldehydes to carboxylic acids over geopolymer supported CuO[J]. Molecular Catalysis, 2023, 536: 112911. |
[1] | ZHANG Jinfei, MA Qi, MU Song, GUO Zheng, ZHUANG Zhijie, QIAO Hongxia, HONG Jinxiang. Effect and Mechanism Analysis of Carboxylic Acid Type Hydrophobic Agent on Cement Hydration [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2768-2777. |
[2] | NI Zhenkun, XUE Lili, DING Yanling, LIU Hongfei, LIU Kaifu. Effect of Desulfurization Gypsum on Properties and Microstructure of Alkali-Activated Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2933-2940. |
[3] | WU Yinjia, WANG Xinjie, ZHU Pinghua, SUN Weihao, XIONG Lei. Effect of Recycled Fine Aggregate on Mechanical Properties and Carbonation Durability of High Ductility Cementitious Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2984-2995. |
[4] | LI Kang, GAO Meng, ZOU Min, LIU Juanhong, XIE Yongjiang. Influence of Carbonate Environment on Performance and Microscopic Characteristics of Tunnel Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2415-2426. |
[5] | LI Xiangguo, WEI Wu, HE Chao, CAI Lixiong, LYU Yang, DAN Jianming. Preparation and Properties of Lightweight High-Strength Autoclaved Aerated Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2427-2433. |
[6] | LI Weihong, GUO Wenbin, GUO Xiangbing, CHEN Xiao, ZHOU Mingkai. Composition Design and Application of CFB Ash-Slag Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2530-2538. |
[7] | YANG Lin, YANG Jianyu, YANG Weijun. Experimental Study on New Composite Excited Lithium Slag-Based Curing Agent for Reinforcing Soft Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2556-2564. |
[8] | HU Kaiwei, CHEN Xuan, LI Tingfeng, ZHANG Junjie, GAO Xuan, YANG Tao. Effect of Mechanical Activation on Early-Age Performance of Sodium Carbonate-Activated GBFS Binders [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2577-2583. |
[9] | LIU Yang, WANG Jiali, LUO Dong, YUAN Heping, LU Naiwei, WANG Bowen. Effects of Silica Fume and GGBS on Mechanical Properties of High Volume Fly Ash Mortar and Its Mechanism [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2584-2594. |
[10] | CAO Dan, SHEN Ding, YAO Shunyu, DING Zhiyao, HUANG Ziyu, LI Mengqi, HUANG Muyang, BAO Shenxu. Preparation of New Lightweight Ceramic Bricks Based on Silt and Carbide Slag [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2595-2601. |
[11] | CHEN Qianlin, YAN Wen, WANG Xiao, LI Yawei. Effect of Raw Material Composition on Microstructures and Properties of Microporous Periclase-Composite Spinel (Mg(Fe, Al)2O4) Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2672-2679. |
[12] | WANG Xianggeng, CHEN Peiyuan, LI Jin, ZHAO Cheng, GU Zhicheng. Effect of Silica Fume Heat-Welded Modified Plastic Particles on Compressive Strength and Microstructure of Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 1975-1982. |
[13] | LIU Yuan, LIU Xiaotong, YANG Anxu, ZHANG Yuanyong, YANG Lin. Effect of Aluminum Sulfate Base Alkali-Free Liquid Accelerating Agent Modified by Fluorine Silicon Slag on Cement Properties [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2005-2011. |
[14] | YANG Shijie, ZHANG Shiping, NIU Longlong, ZHANG Shouwei. Crack Repairability of Cementitious Materials by Superabsorbent Polymers in Different Environmental Solutions [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2012-2021. |
[15] | GAN Xueyu, CHEN Shuai, GENG Haining, LI Zonggang, MA Haosen, CHEN Wei, HOU Suo, LI Qiu. Effect of Modified High Concentration Boric Acid Solution on Mechanical and Neutron Shielding Properties of Serpentine Shielded Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2047-2055. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||