[1] 李最雄. 丝绸之路古遗址保护[J]. 中国文化遗产, 2004(3): 118-122. LI Z X. Protection of ancient silk road sites[J]. China Cultural Heritage, 2004(3): 118-122 (in Chinese). [2] 周志恒, 钟大康, 凡 睿, 等. 致密砂岩中岩屑溶蚀及其伴生胶结对孔隙发育的影响: 以川东北元坝西部须二下亚段为例[J]. 中国矿业大学学报, 2019, 48(3): 592-603+615. ZHOU Z H, ZHONG D K, FAN R, et al. Effect of dissolution of rock fragments and its associated cementation on pore evolution: a case study of the lower sub-member of the second member of Xujiahe formation in the west of Yuanba area, northeastern Sichuan Basin[J]. Journal of China University of Mining & Technology, 2019, 48(3): 592-603+615 (in Chinese). [3] 卢文刚, 张雨荷. 地震灾害应对视角下的不可移动文物保护问题研究[J]. 城市与减灾, 2015(6): 18-22. LU W G, ZHANG Y H. Study on protection of immovable cultural relics with coping perspective for earthquake disaster[J]. City and Disaster Reduction, 2015(6): 18-22 (in Chinese). [4] 张兵峰. 川渝石窟裂隙水病害机理研究: 以大足石刻大佛湾卧佛区域为例[J]. 中国文化遗产, 2018(4): 27-34. ZHANG B F. Study on the mechanism of fissure water disease in Sichuan-Chongqing Grottoes: taking the reclining Buddha area in Dazu Stone Carving Buddha Bay as an example[J]. China Cultural Heritage, 2018(4): 27-34 (in Chinese). [5] 彭反三. 天然水硬性石灰[J]. 石灰, 2009(3): 44-48. PENG F S. Natural hydraulic lime[J]. Lime, 2009(3): 44-48 (in Chinese). [6] SILVA B A, FERREIRA P A P, GOMES A. Influence of natural hydraulic lime content on the properties of aerial lime-based mortars[J]. Construction and Building Materials, 2014, 72: 208-218. [7] FUSADE L, VILES H, WOOD C, et al. The effect of wood ash on the properties and durability of lime mortar for repointing damp historic buildings[J]. Construction and Building Materials, 2019, 212: 500-513. [8] LUO K, LI J, LU Z Y, et al. Effect of nano-SiO2 on early hydration of natural hydraulic lime[J]. Construction and Building Materials, 2019, 216: 119-127. [9] ZHANG D J, ZHAO J H, WANG D M, et al. Influence of pozzolanic materials on the properties of natural hydraulic lime based mortars[J]. Construction and Building Materials, 2020, 244: 118360. [10] 居相文, 吴日民, 周亚洲, 等. 氧化石墨烯在水热法制备Sc2W3O12粉体中的应用[J]. 无机材料学报, 2015, 30(4): 374-378. JU X W, WU R M, ZHOU Y Z, et al. Application of graphene oxide in synthesis of Sc2W3O12 powder[J]. Journal of Inorganic Materials, 2015, 30(4): 374-378 (in Chinese). [11] LERF A, HE H Y, FORSTER M, et al. Structure of graphite oxide revisited[J]. The Journal of Physical Chemistry B, 1998, 102(23): 4477-4482. [12] HE H Y, KLINOWSKI J, FORSTER M, et al. A new structural model for graphite oxide[J]. Chemical Physics Letters, 1998, 287(1/2): 53-56. [13] 李相国, 任钊锋, 徐朋辉, 等. 氧化石墨烯复合PVA纤维增强水泥基材料的力学性能及耐久性研究[J]. 硅酸盐通报, 2018, 37(1): 245-250. LI X G, REN Z F, XU P H, et al. Research on mechanical properties and durability of graphene oxide composite PVA fiber reinforced cement-based material[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(1): 245-250 (in Chinese). [14] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. [15] 何 威, 许吉航. 少层石墨烯对普通混凝土性能的影响[J]. 硅酸盐通报, 2021, 40(5): 1477-1488. HE W, XU J H. Effect of few-layer graphene on properties of ordinary concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1477-1488 (in Chinese). [16] SUN Y Q, WU Q, SHI G Q. Graphene based new energy materials[J]. Energy & Environmental Science, 2011, 4(4): 1113-1132. [17] 杨富巍. 无机胶凝材料在不可移动文物保护中的应用[D]. 杭州: 浙江大学, 2011. YANG F W. Study of inorganic gelling materials for the conervation of immovable relics[D].Hangzhou: Zhejiang University, 2011 (in Chinese). [18] FARIA P, DUARTE P, BARBOSA D, et al. New composite of natural hydraulic lime mortar with graphene oxide[J]. Construction and Building Materials, 2017, 156: 1150-1157. [19] DIMOU A E, CHARALAMPIDOU C M, METAXA Z S, et al. Mechanical and electrical properties of hydraulic lime pastes reinforced with carbon nanomaterials[J]. Procedia Structural Integrity, 2020, 28: 1694-1701. [20] 徐朋辉. 氧化石墨烯水泥基表面强化材料的性能研究[D]. 武汉: 武汉理工大学, 2017. XU P H. Research on the performance of surface strengthening cementitious materials based on graphene oxide modified[D].Wuhan: Wuhan University of Technology, 2017 (in Chinese). [21] CARVALHO A, COSTA M C F, MARANGONI V S, et al. The degree of oxidation of graphene oxide[J]. Nanomaterials, 2021, 11(3): 560. [22] 袁 琦, 何小芳, 张利红, 等. 水热合成制备水化硅酸钙-聚氨酯纳米复合材料的结构分析[J]. 硅酸盐通报, 2021, 40(11): 3565-3571. YUAN Q, HE X F, ZHANG L H, et al. Structure analysis of calcium silicate hydrate polyurethane nanocomposites prepared by hydrothermal synthesis[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3565-3571 (in Chinese). [23] 徐树强, 王乐乐, 马清林, 等. 天然水硬性石灰在不同碳化条件下的水化反应[J]. 文物保护与考古科学, 2017, 29(4): 1-8. XU S Q, WANG L L, MA Q L, et al. Hydration of natural hydraulic lime pastes under different conditions of carbonation[J]. Sciences of Conservation and Archaeology, 2017, 29(4): 1-8 (in Chinese). [24] 邓丽娟. 氧化石墨烯基对水泥基材料微观形貌的影响[D]. 西安: 陕西科技大学, 2017. DENG L J. Effect of graphene oxide-based on microstructure of cement-based materials[D].Xi’an: Shaanxi University of Science & Technology, 2017 (in Chinese). [25] ALARCON-RUIZ L, PLATRET G, MASSIEU E, et al. The use of thermal analysis in assessing the effect of temperature on a cement paste[J]. Cement and Concrete Research, 2005, 35(3): 609-613. [26] 魏 康, 李 犇, 孙 峤. 玄武岩纤维改善再生混凝土抗氯离子渗透性能研究[J]. 硅酸盐通报, 2022, 41(5): 1656-1662. WEI K, LI B, SUN Q. Improving chloride ion penetration resistance of recycled concrete by basalt fiber[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1656-1662 (in Chinese). [27] BARBOSA V F F, MACKENZIE K J D, THAUMATURGO C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers[J]. International Journal of Inorganic Materials, 2000, 2(4): 309-317. [28] JIA Q Q, CHEN W W, TONG Y M, et al. Strength, hydration, and microstructure properties of calcined ginger nut and natural hydraulic lime based pastes for earthen plaster restoration[J]. Construction and Building Materials, 2022, 323: 126606. [29] AHMED M J, LAMBRECHTS K, LING X, et al. Effect of hydroxide, carbonate, and sulphate anions on the β-dicalcium silicate hydration rate[J]. Cement and Concrete Research, 2023, 173: 107302. [30] OKORONKWO M U, GLASSER F P. Strätlingite: compatibility with sulfate and carbonate cement phases[J]. Materials and Structures, 2016, 49(9): 3569-3577. [31] ZHAO L, GUO X L, GE C, et al. Investigation of the effectiveness of PC@GO on the reinforcement for cement composites[J]. Construction and Building Materials, 2016, 113: 470-478. |