BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (7): 2503-2513.
Special Issue: 资源综合利用
• Solid Waste and Eco-Materials • Previous Articles Next Articles
YU Jinhu1,2, LI Qiang2, LIU Xueying2, ZHOU Shuguang1,2, WANG Chao1,2
Received:
2023-10-10
Revised:
2024-01-08
Online:
2024-07-15
Published:
2024-07-24
CLC Number:
YU Jinhu, LI Qiang, LIU Xueying, ZHOU Shuguang, WANG Chao. Research Progress on Chloride Ion Penetration Resistance of Geopolymer Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2503-2513.
[1] WANG A G, ZHENG Y, ZHANG Z H, et al. The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: a review[J]. Engineering, 2020, 6(6): 695-706. [2] PARTHIBAN D, VIJAYAN D S. Study on stress-strain effect of reinforced Metakaolin based GPC under compression[J]. Materials Today: Proceedings, 2020, 22: 822-828. [3] LI V C. High-performance and multifunctional cement-based composite material[J]. Engineering, 2019, 5(2): 250-260. [4] DAVIDOVITS J. Geopolymers[J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656. [5] LAHOTI M, NARANG P, TAN K H, et al. Mix design factors and strength prediction of metakaolin-based geopolymer[J]. Ceramics International, 2017, 43(14): 11433-11441. [6] ROSTAMI M, BEHFARNIA K. The effect of silica fume on durability of alkali activated slag concrete[J]. Construction and Building Materials, 2017, 134: 262-268. [7] HASSAN A, ARIF M, SHARIQ M. Use of geopolymer concrete for a cleaner and sustainable environment: a review of mechanical properties and microstructure[J]. Journal of Cleaner Production, 2019, 223: 704-728. [8] TURNER L K, COLLINS F G. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete[J]. Construction and Building Materials, 2013, 43: 125-130. [9] 孙丛涛, 牛荻涛. 混凝土中氯离子扩散性能的深入探讨[J]. 工业建筑, 2010, 40(9): 80-83. SUN C T, NIU D T. Further study on chloride ion diffusion properties in concrete[J]. Industrial Construction, 2010, 40(9): 80-83 (in Chinese). [10] 田 壮, 肖官衍, 金伟良, 等. 基于复合材料理论的混凝土内多离子扩散模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1393-1401. TIAN Z, XIAO G Y, JIN W L, et al. Diffusion model of multi ions in concrete based on composite theory[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(7): 1393-1401 (in Chinese). [11] SINGH B, ISHWARYA G, GUPTA M, et al. Geopolymer concrete: a review of some recent developments[J]. Construction and Building Materials, 2015, 85: 78-90. [12] 孙 浩, 马志斌, 路广军, 等. 粉煤灰碱激发制备地质聚合物研究进展[J]. 洁净煤技术, 2023, 29(11): 140-153. SUN H, MA Z B, LU G J, et al. Review on geopolymer preparation by alkali activation of coal fly ash[J]. Clean Coal Technology, 2023, 29(11): 140-153 (in Chinese). [13] 吕邦成, 郭丽萍, 丁 聪, 等. 高延性地质聚合物复合材料性能及微结构研究进展[J]. 材料导报, 2023, 37(10): 230-240. LYU B C, GUO L P, DING C, et al. A review on performance and microstructure of high ductility geopolymer composites[J]. Materials Reports, 2023, 37(10): 230-240 (in Chinese). [14] WASIM M, NGO T D, LAW D. A state-of-the-art review on the durability of geopolymer concrete for sustainable structures and infrastructure[J]. Construction and Building Materials, 2021, 291: 123381. [15] YANG T, XU S C, LIU Z X, et al. Experimental and numerical investigation of bond behavior between geopolymer based ultra-high-performance concrete and steel bars[J]. Construction and Building Materials, 2022, 345: 128220. [16] HUANG J Q, KUMAR S, DAI J G. Flexural performance of steel-reinforced geopolymer concrete one-way slabs: experimental and numerical investigations[J]. Construction and Building Materials, 2023, 366: 130098. [17] SUDHA C, SAMBASIVAN A K, KANNAN R P R, et al. Investigation on the performance of reinforced concrete columns jacketed by conventional concrete and geopolymer concrete[J]. Engineering Science and Technology, an International Journal, 2022, 36: 101275. [18] ARAVIND N, NAGAJOTHI S, ELAVENIL S. Machine learning model for predicting the crack detection and pattern recognition of geopolymer concrete beams[J]. Construction and Building Materials, 2021, 297: 123785. [19] 陈艾荣, 潘子超. 细观尺度上的钢筋混凝土结构耐久性数值模拟[M]. 北京: 科学出版社, 2016: 71-75. CHEN A R, PAN Z C. Numerical simulation of the durability of reinforced concrete structures on a fine scale[M]. Beijing: Science Publishing House, 2016: 71-75 (in Chinese). [20] SHI C J, DENG D H, XIE Y J. Pore structure and chloride ion transport mechanisms in concrete[J]. Key Engineering Materials, 2006, 302/303: 528-535. [21] FU Q, ZHANG Z R, NIU D T. Understanding the acceleration impact of load and flowing water on the chloride ion transport properties of fly ash-based geopolymer concrete[J]. Cement and Concrete Composites, 2023, 141: 105146. [22] TURGEON-MALETTE V, CHEN X D, BAH A S, et al. Chloride ion permeability of ultra-high-performance fiber-reinforced concrete under sustained load[J]. Journal of Building Engineering, 2023, 66: 105842. [23] 李宇航, 温 勇, 韩国旗, 等. 持续荷载和锂渣取代量对混凝土抗氯离子渗透性能的影响[J]. 硅酸盐通报, 2023, 42(2): 598-606. LI Y H, WEN Y, HAN G Q, et al. Effects of continuous load and lithium slag content on chloride ion permeability resistance of concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(2): 598-606 (in Chinese). [24] 张 勇, 方宇迟, 沈 颖, 等. 非饱和碱矿渣砂浆的氯离子传输试验研究[J]. 建筑材料学报, 2022, 25(12): 1219-1224. ZHANG Y, FANG Y C, SHEN Y, et al. Experimental study on chloride transport in unsaturated alkali-activated slag mortars[J]. Journal of Building Materials, 2022, 25(12): 1219-1224 (in Chinese). [25] 韦建刚, 陈 荣, 黄 伟, 等. 静水压力下超高性能混凝土的抗氯离子渗透性能[J]. 硅酸盐通报, 2022, 41(8): 2706-2715+2747. WEI J G, CHEN R, HUANG W, et al. Chloride penetration resistance of ultra-high performance concrete under hydrostatic pressure[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2706-2715+2747 (in Chinese). [26] 汪首元, 闫金萍, 李 昊, 等. 掺加高吸水树脂(SAP)的混凝土孔结构及其耐久性[J]. 公路, 2023, 68(5): 295-300. WANG S Y, YAN J P, LI H, et al. Pore structure and durability of concrete mixed with super absorbent resin (SAP)[J]. Highway, 2023, 68(5): 295-300 (in Chinese). [27] 李趁趁, 张文彬, 张 普, 等. 硫酸钙晶须-玄武岩纤维混凝土抗氯离子渗透性能试验[J]. 工业建筑, 2022, 52(9): 48-52+66. LI C C, ZHANG W B, ZHANG P, et al. Experimental research on chloride penetration resistance of calcium sulfate whisker and basalt fiber concrete[J]. Industrial Construction, 2022, 52(9): 48-52+66 (in Chinese). [28] OKOYE F N, PRAKASH S, SINGH N B. Durability of fly ash based geopolymer concrete in the presence of silica fume[J]. Journal of Cleaner Production, 2017, 149: 1062-1067. [29] ÇEVIK A, ALZEEBAREE R, HUMUR G, et al. Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete[J]. Ceramics International, 2018, 44(11): 12253-12264. [30] BABAEE M, CASTEL A. Chloride-induced corrosion of reinforcement in low-calcium fly ash-based geopolymer concrete[J]. Cement and Concrete Research, 2016, 88: 96-107. [31] LEE W H, WANG J H, DING Y C, et al. A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete[J]. Construction and Building Materials, 2019, 211: 807-813. [32] 蒋林华, 李 娟. 混凝土抗氯离子渗透性试验方法比较研究[J]. 河海大学学报(自然科学版), 2004, 32(1): 55-58. JIANG L H, LI J. Investigation of test methods for concrete resistance to chloride ion permeability[J]. Journal of Hehai University (Natural Sciences), 2004, 32(1): 55-58 (in Chinese). [33] YANG C C, SU J K. Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar[J]. Cement and Concrete Research, 2002, 32(10): 1559-1565. [34] HE R, YE H L, MA H Y, et al. Correlating the chloride diffusion coefficient and pore structure of cement-based materials using modified noncontact electrical resistivity measurement[J]. Journal of Materials in Civil Engineering, 2019, 31(3): 04019006. [35] 方 正, 王 冲, 罗遥凌. 电脉冲对加速水泥基材料碳硫硅钙石型硫酸盐侵蚀的影响[J]. 硅酸盐学报, 2018, 46(8): 1095-1102. FANG Z, WANG C, LUO Y L. Effect of electrical pulse on accelerated thaumasite sulfate attack in cement-based materials[J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1095-1102 (in Chinese). [36] 曾 涛, 方 正, 熊光启, 等. 基于直流阶跃暂态电阻法的混凝土渗透性表征[J]. 土木与环境工程学报(中英文), 2023, 12(15): 1-13. ZENG T, FANG Z, XIONG G Q, et al. Characterisation of concrete permeability based on the DC step transient resistance method[J]. Journal of Civil and Environmental Engineering, 2023, 12(15): 1-13 (in Chinese). [37] NYBO E, MAIER R S, LAUCHNOR E G, et al. Electrophoretic nuclear magnetic resonance measurement of electroosmotic flow and dispersion in hydrating cement paste[J]. Cement and Concrete Research, 2019, 116: 11-18. [38] 陈佳文. 水泥基材料氯离子渗透扩散性的试验研究与细观数值模拟[D]. 武汉: 华中科技大学, 2021. CHEN J W. Experimental study and meso-numerical simulation on permeability and diffusion of chloride ion in cement-based materials[D].Wuhan: Huazhong University of Science and Technology, 2021 (in Chinese). [39] XIAO L Z, REN Z, SHI W C, et al. Experimental study on chloride permeability in concrete by non-contact electrical resistivity measurement and RCM[J]. Construction and Building Materials, 2016, 123: 27-34. [40] HE F Q, SHI C J, YUAN Q, et al. Calculation of chloride concentration at color change boundary of AgNO3 colorimetric measurement[J]. Cement and Concrete Research, 2011, 41(11): 1095-1103. [41] MAES M, GRUYAERT E, DE BELIE N. Resistance of concrete with blast-furnace slag against chlorides, investigated by comparing chloride profiles after migration and diffusion[J]. Materials and Structures, 2013, 46(1): 89-103. [42] YANG C C, WANG L C. The diffusion characteristic of concrete with mineral admixtures between salt ponding test and accelerated chloride migration test[J]. Materials Chemistry and Physics, 2004, 85(2/3): 266-272. [43] CHIANG C T, YANG C C. Relation between the diffusion characteristic of concrete from salt ponding test and accelerated chloride migration test[J]. Materials Chemistry and Physics, 2007, 106(2/3): 240-246. [44] 薛军鹏, 林亚杰, 陈建科, 等. 氯盐环境下混凝土离子渗透性测试方法评述[J]. 混凝土世界, 2018(10): 52-57. XUE J P, LIN Y J, CHEN J K, et al. The review of the test methods for chloride ion permeability of concrete under chloride-rich environment[J]. China Concrete, 2018(10): 52-57 (in Chinese). [45] 罗伯光, 覃荷瑛. 利用NEL法研究再生混凝土抗氯离子渗透性能[J]. 混凝土, 2014(9): 41-44. LUO B G, QIN H Y. Study on anti-chloride ion permeability of recycled aggregate concrete by NEL method[J]. Concrete, 2014(9): 41-44 (in Chinese). [46] 阎培渝, 杨进波, 吴志刚. 混凝土保护层抗氯离子渗透性的现场测试方法研究[J]. 混凝土, 2008(8): 6-9. YAN P Y, YANG J B, WU Z G. Experimental research of an in situ chloride migration test for covercrete[J]. Concrete, 2008(8): 6-9 (in Chinese). [47] CABEZA M, KEDDAM M, NÓVOA X R, et al. Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste[J]. Electrochimica Acta, 2006, 51(8/9): 1831-1841. [48] CHINDAPRASIRT P, CHALEE W. Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site[J]. Construction and Building Materials, 2014, 63: 303-310. [49] SADANGI S C, PRADHAN B. Effect of admixed chloride and molarity of NaOH solution on early-age strength and reinforcement corrosion in FA/GGBS geopolymer concrete[J]. Materials Today: Proceedings, 2022, 65: 1528-1533. [50] BERNAL S A, MEJÍA DE GUTIÉRREZ R, PROVIS J L. Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends[J]. Construction and Building Materials, 2012, 33: 99-108. [51] 陈 乔. 碱矿渣混凝土氯离子渗透及钢筋锈蚀性能研究[D]. 重庆: 重庆大学, 2008. CHEN Q. Research on chloride ion permeability and reinforcement corrosion of alkali activated slag concrete[D].Chongqing: Chongqing University, 2008 (in Chinese). [52] 于 琦, 万小梅, 赵铁军, 等. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 100-105. YU Q, WAN X M, ZHAO T J, et al. Investigation on resistance of chloride penetration of alkali activated slag concrete and related electrical test methods[J]. Materials Reports, 2022, 36(5): 100-105 (in Chinese). [53] MELO N A A, CINCOTTO M A, REPETTE W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement[J]. Cement and Concrete Research, 2008, 38(4): 565-574. [54] RYU G S, LEE Y B, KOH K T, et al. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators[J]. Construction and Building Materials, 2013, 47: 409-418. [55] 刘小金. 用交流阻抗方法研究碱激发矿渣水泥浆体水化和微观结构[D]. 长沙: 湖南大学, 2015. LIU X J. Study on hydration and microstructure of alkali-activated slag cement paste by AC impedance method[D].Changsha: Hunan University, 2015 (in Chinese). [56] 张 宇. 碱激发矿渣混凝土的力学性能和荷载下的传输性能[D]. 青岛: 青岛理工大学, 2018. ZHANG Y. The mechanical properties and transport properties under loading of alkali-activated slag concrete[D].Qingdao: Qingdao Tehcnology University, 2018 (in Chinese). [57] WANG S D, SCRIVENER K L, PRATT P L. Factors affecting the strength of alkali-activated slag[J]. Cement and Concrete Research, 1994, 24(6): 1033-1043. [58] MA Q M, NANUKUTTAN S V, MUHAMMED B P A, et al. Chloride transport and the resulting corrosion of steel bars in alkali activated slag concretes[J]. Materials and Structures, 2016, 49(9): 3663-3677. [59] 杜天玲, 刘 英, 于咏妍, 等. 水玻璃对粉煤灰矿渣地聚合物强度的影响及激发机理[J]. 公路交通科技, 2021, 38(1): 41-49. DU T L, LIU Y, YU Y Y, et al. Influence of sodium silicate on fly ash slag geopolymer strength and stimulating mechanism[J]. Journal of Highway and Transportation Research and Development, 2021, 38(1): 41-49 (in Chinese). [60] JUMAA N H, ALI I M, NASR M S, et al. Strength and microstructural properties of binary and ternary blends in fly ash-based geopolymer concrete[J]. Case Studies in Construction Materials, 2022, 17: e01317. [61] YAVANA R S, SALEH N M, BIN N J, et al. Durability of geopolymer concrete with addition of polypropylene fibre[J]. Materials Today: Proceedings, 2022, 56: 2846-2851. [62] JAYANTHI V, AVUDAIAPPAN S, AMRAN M, et al. Innovative use of micronized biomass silica-GGBS as agro-industrial by-products for the production of a sustainable high-strength geopolymer concrete[J]. Case Studies in Construction Materials, 2023, 18: e01782. [63] ALAWI AL-SODANI K A. Mix design, mechanical properties and durability of the rubberized geopolymer concrete: a review[J]. Case Studies in Construction Materials, 2022, 17: e01480. [64] BABU G K, RAO K V, DEY S, et al. Performance studies on quaternary blended geopolymer concrete[J]. Hybrid Advances, 2023, 2: 100019. [65] MOUSAVINEJAD S H G, SAMMAK M. Strength and chloride ion penetration resistance of ultra-high-performance fiber reinforced geopolymer concrete[J]. Structures, 2021, 32: 1420-1427. [66] HU M Y, ZHU X M, LONG F M. Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives[J]. Cement and Concrete Composites, 2009, 31(10): 762-768. [67] HUSEIEN G F, MIRZA J, ISMAIL M, et al. Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar[J]. Ain Shams Engineering Journal, 2018, 9(4): 1557-1566. [68] PRABU B, SHALINI A, KUMAR J. Rice husk ash based geopolymer concrete: a review[J]. Chemical Science Review and Letters, 2014 [69] FARHAN K Z, JOHARI M A M, DEMIRBOĞA R. Impact of fiber reinforcements on properties of geopolymer composites: a review[J]. Journal of Building Engineering, 2021, 44: 102628. |
[1] | MA Xinmei, WEN Yong, TIAN Peifeng, LIN Haimeng, SHAO Shuai. Corrosion Effects of Vitamins on Steel Bar in Simulated Pore Solution of Concrete Containing Chlorine [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2093-2101. |
[2] | LIANG Qiuqun, CHEN Xuandong, HU Xiang. Mesoscopic Simulation of Chloride Ion Transport Mechanism in Concrete under Freeze-Thaw Cycles [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2102-2110. |
[3] | LENG Lingye, ZHANG Pengfei, LIANG Wenwen. Dynamic Compressive Mechanical Behavior of Basalt Fiber Reinforced Geopolymer Concrete under High Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 914-921. |
[4] | GE Keyu, LONG Yong, CHEN Luyi, LI Xin, LIU Kaizhi, WANG Yu, SUN Tao. Effects of Mixing Mineral Admixtures on Properties of Ultra High Performance Wet-Joint Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 948-955. |
[5] | CUI Jifei, BAI Lin, RAO Pingping, KANG Chenjunjie, ZHANG Kun. Prediction Model of Chloride Erosion Concrete Based on Artificial Intelligence Algorithm [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 439-447. |
[6] | YI Yuqi, LI Jing, WEI Liumei, TIAN Hao, ZHUANG Ende, LI Xuejie. Effect of LDHs with Different Mg/Al Ratios on Corrosion Resistance of Steel Bar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 121-127. |
[7] | ZHANG Haixia, DONG Hao. Drying Shrinkage Performance of Geopolymer Concrete and Shrinkage Compensation of Active MgO [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 219-226. |
[8] | LIU Yumei, YANG Lang, RAO Feng, ZHANG Kaiming, SUN Chuanlin. Research Progress of Chloride Ions on Corrosion of Marine Concrete Reinforcement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3059-3074. |
[9] | SHAN Yalong, YANG Shengjie, HE Gongrui, SUI Shiyu, LI Shaochun, GENG Yongjuan. Influence Mechanism of Limestone Powder on Chloride Ions Transport of Cement-Based Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3089-3099. |
[10] | LIANG Wenjie, TAN Hongbo, LYU Zhouling. Research Progress on Endogenous Chloride Ion Binding of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2667-2682. |
[11] | ZHANG Chenjian, XIE Jialei, WANG Zhihao, FANG Siyi, BA Mingfang. Effect of Chloride Ion Content on Compressive Strength and Durability of Medium-High Strength Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(7): 2382-2391. |
[12] | GAO Dejun, HUANG Yulong, WANG Qing, WANG Xuan. Deterioration Characteristics of UHPC under Stray Current Environment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(6): 2007-2014. |
[13] | ZHOU Lina, CAI Ying, MA Cailong, LUO Ling. Research Progress on Adsorption Capacity of Hydrotalcite for Chloride Ions in Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(4): 1137-1147. |
[14] | CHEN Chunhong, YU Jiang, LIU Ronggui, WANG Lei, LIU Hui, WU Jinlong. Chloride Ion Permeability of Recycled Fine Aggregate Concrete under Dry-Wet Cycles [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(4): 1217-1225. |
[15] | XIU Jiande, JIN Zuquan, LI Ning, HOU Baorong. Research Progress of Chloride Ion Transport in Concrete under Marine Salt Spray Environment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(3): 771-785. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||