[1] 王福明, 万嘉祺, 黄澳斯, 等. 单调和重复荷载作用下钢-聚丙烯混杂纤维ECC轴压力学性能试验研究[J]. 建筑结构学报, 2023, 44(1): 344-353. WANG F M, WAN J Q, HUANG A S, et al. Experimental study of axial compression performance of steel-polypropylene hybrid fiber ECC under monotonic and repeated loadings[J]. Journal of Building Structures, 2023, 44(1): 344-353 (in Chinese). [2] 牛艳伟, 匡笑艳, 郑军涛, 等. SFCC现场导热系数与温度场实测及预测方法研究[J]. 建筑材料学报, 2024, 27(3): 245-252+282. NIU Y W, KUANG X Y, ZHENG J T, et al. Experimental study and prediction on thermal conductivity of steel fiber reinforced lightweight concrete and temperature field test[J]. Journal of Building Materials, 2024, 27(3): 245-252+282 (in Chinese). [3] 李力剑, 刘素梅, 徐凡丁, 等. 含粗骨料超高性能混凝土的单轴受拉力学性能[J]. 建筑材料学报, 2024, 27(2): 163-173. LI L J, LIU S M, XU F D, et al. Uniaxial tensile behavior and mechanism analysis of ultra-high performance concrete containing coarse aggregate[J]. Journal of Building Materials, 2024, 27(2): 163-173 (in Chinese). [4] 谢建斌, 何天淳, 程赫明, 等. 循环荷载下路面用钢纤维混凝土的弯曲疲劳研究[J]. 兰州理工大学学报, 2004, 30(2): 104-109. XIE J B, HE T C, CHENG H M, et al. Investigation flexural fatigue behavior of steel fiber reinforced concrete for pavement surface stratum under cyclic load[J]. Journal of Lanzhou University of Technology, 2004, 30(2): 104-109 (in Chinese). [5] 张春生, 孟令其, 纪安业, 等. 钢纤维掺量对高性能混凝土碳化性能影响机理研究[J]. 硅酸盐通报, 2018, 37(10): 3206-3212. ZHANG C S, MENG L Q, JI A Y, et al. Mechanism study of steel fiber content on the carbonization resistance of high performance concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3206-3212 (in Chinese). [6] 段小芳, 袁娇娇. 塑钢纤维混凝土早龄期力学性能及弹性模量试验研究[J]. 水电能源科学, 2021, 39(12): 168-171+96. DUAN X F, YUAN J J. Experimental study on mechanical properties and elastic modulus of plastic steel fiber reinforced concrete at early age[J]. Water Resources and Power, 2021, 39(12): 168-171+96 (in Chinese). [7] 付传清, 陈 军, 金贤玉, 等. 早龄期混凝土的电阻率特性和微观形貌研究[J]. 混凝土, 2015(4): 32-36. FU C Q, CHEN J, JIN X Y, et al. Electrical resistivity property and microstructure development of young concrete[J]. Concrete, 2015(4): 32-36 (in Chinese). [8] 刘志洪, 胡 昱, 邬 昆, 等. 低热水泥混凝土早龄期断裂性能发展特性研究[J]. 人民长江, 2022, 53(1): 175-181. LIU Z H, HU Y, WU K, et al. Study on fracture development characteristics of low-heat cement concrete at early age[J]. Yangtze River, 2022, 53(1): 175-181 (in Chinese). [9] 陈 军. 早龄期混凝土水化进程及宏观与细微观性能相关性研究[D]. 杭州: 浙江大学, 2014. CHEN J. Hydration process and correlation of macro-and meso-/micro-properties of early-age concrete[D]. Hangzhou: Zhejiang University, 2014 (in Chinese). [10] 李化建, 谢永江, 易忠来, 等. 混凝土电阻率的研究进展[J]. 混凝土, 2011(6): 35-40. LI H J, XIE Y J, YI Z L, et al. Advance in research on electrical resistivity of concrete[J]. Concrete, 2011(6): 35-40 (in Chinese). [11] 廖宜顺, 万世辉, 肖 剑, 等. 基于电阻率法研究矿物掺合料对铝酸盐水泥水化的影响[J]. 武汉科技大学学报, 2021, 44(5): 352-357. LIAO Y S, WAN S H, XIAO J, et al. Effects of mineral admixtures on hydration of aluminate cement investigated by electrical resistivity method[J]. Journal of Wuhan University of Science and Technology, 2021, 44(5): 352-357 (in Chinese). [12] 廖国胜, 杨书超, 汪琰皓, 等. 不同稠度条件下的水泥基材料电阻率与水化特性研究[J]. 武汉科技大学学报, 2018, 41(6): 434-438. LIAO G S, YANG S C, WANG Y H, et al. Resistivity and hydration characteristics of cement-based materials under different consistency conditions[J]. Journal of Wuhan University of Science and Technology, 2018, 41(6): 434-438 (in Chinese). [13] ZENG X H, LIU H C, ZHU H S, et al. Study on damage of concrete under uniaxial compression based on electrical resistivity method[J]. Construction and Building Materials, 2020, 254: 119270. [14] ZHOU C S, LI K F, HAN J G. Characterizing the effect of compressive damage on transport properties of cracked concretes[J]. Materials and Structures, 2012, 45(3): 381-392. [15] 魏小胜, 肖莲珍, 李宗津, 等. 钢纤维水泥基材料的导电机理和水化特性[J]. 混凝土, 2006(4): 11-13+51. WEI X S, XIAO L Z, LI Z J, et al. Conductive mechanism and hydration property of cement-based materials with steel fibers[J]. Concrete, 2006(4): 11-13+51 (in Chinese). [16] CHIARELLO M, ZINNO R. Electrical conductivity of self-monitoring CFRC[J]. Cement and Concrete Composites, 2005, 27(4): 463-469. [17] SHAN W, LIU Y, HU Z G, et al. A model for the electrical resistivity of frozen soils and an experimental verification of the model[J]. Cold Regions Science and Technology, 2015, 119: 75-83. [18] SNYDER K A, FENG X, KEEN B D, et al. Estimating the electrical conductivity of cement paste pore solutions from OH-, K+ and Na+ concentrations[J]. Cement and Concrete Research, 2003, 33(6): 793-798. [19] DUAN Z, YAN X S, SUN Q, et al. New models for calculating the electrical resistivity of loess affected by moisture content and NaCl concentration[J]. Environmental Science and Pollution Research, 2022, 29(12): 17280-17294. [20] SUITS L D, SHEAHAN T C, MUÑOZ-CASTELBLANCO J A, et al. The influence of changes in water content on the electrical resistivity of a natural unsaturated loess[J]. Geotechnical Testing Journal, 2012, 35(1): 103587. [21] TANG L Y, WANG K, JIN L, et al. A resistivity model for testing unfrozen water content of frozen soil[J]. Cold Regions Science and Technology, 2018, 153: 55-63. [22] DUAN Z, YAN X S, SUN Q, et al. Effects of water content and salt content on electrical resistivity of loess[J]. Environmental Earth Sciences, 2021, 80(14): 469. [23] 张仕桦, 刘京红, 刘 婷, 等. 粉煤灰再生混凝土强度的超声检测研究[J]. 混凝土, 2020(4): 14-18. ZHANG S H, LIU J H, LIU T, et al. Ultrasonic analysis on strength of recycled concrete with fly ash[J]. Concrete, 2020(4): 14-18 (in Chinese). [24] 范向前, 葛 菲. 基于声发射技术的早龄期混凝土断裂性能[J]. 建筑材料学报, 2024, 27(2): 153-160. FAN X Q, GE F. Fracture performance of early-age concrete based on acoustic emission[J]. Journal of Building Materials, 2024, 27(2): 153-160 (in Chinese). [25] EAGLAND D. The influence of hydration on the stability of hydrophobic colloidal systems[M]//Water in Disperse Systems. Boston, MA: Springer US, 1975: 1-74. [26] LOWKE D, GEHLEN C. The zeta potential of cement and additions in cementitious suspensions with high solid fraction[J]. Cement and Concrete Research, 2017, 95: 195-204. |