BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (6): 2225-2240.
• Ceramics • Previous Articles Next Articles
DONG Xinbao1, REN Yi2, WANG Yang1, LIU Futian1
Received:
2023-10-30
Revised:
2024-01-12
Online:
2024-06-15
Published:
2024-06-18
CLC Number:
DONG Xinbao, REN Yi, WANG Yang, LIU Futian. Research Progress of Pressureless Sintered Silicon Carbide Bulletproof Ceramic Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2225-2240.
[1] 汪 涵, 尹珑龙, 郭 晴, 等. 纳米碳化硅的制备与应用研究进展[J]. 广东化工, 2022, 49(8): 84-86+108. WANG H, YIN L L, GUO Q, et al. Research prospects of application and preparation of nano-silcon carbon[J]. Guangdong Chemical Industry, 2022, 49(8): 84-86+108 (in Chinese). [2] 曹团结, 陆国龙, 宋华磊, 等. 碳化硅作为导热材料在橡胶中的应用[J]. 橡胶科技, 2022, 20(3): 126-130. CAO T J, LU G L, SONG H L, et al. Application of silicon carbide as thermal conductive material in rubber[J]. Rubber Science and Technology, 2022, 20(3): 126-130 (in Chinese). [3] 宋德升, 张 彪, 朱振坤. 碳化硅高温换热器的研制及应用[J]. 工业炉, 2021, 43(4): 48-52. SONG D S, ZHANG B, ZHU Z K. Development and application of SiC high temperature heat exchanger[J]. Industrial Furnace, 2021, 43(4): 48-52 (in Chinese). [4] 曹宇翔, 张 潇, 王少宁, 等. 碳化硅功率器件在宇航电源中的研究与应用[J]. 电子设计工程, 2023, 31(9): 7-12. CAO Y X, ZHANG X, WANG S N, et al. Research and application of silicon carbide power devices in aerospace power supply[J]. Electronic Design Engineering, 2023, 31(9): 7-12 (in Chinese). [5] 都兴红, 仇 知, 郭静霓, 等. 碳化硅的应用现状及展望[C]. 洛阳: 第十七届全国耐火材料青年学术报告会论文集. 2020: 3. DU X H, QIU Z, GUO J N et al. Application status and prospect of silicon carbide[C]. Luoyang: Proceedings of the 17th National Refractory Youth Academic Report. 2020: 3 (in Chinese). [6] 罗 娟, 杨科伟, 王 萌, 等. 防弹陶瓷的烧结工艺及发展现状[J]. 陶瓷, 2020(9): 24-27. LUO J, YANG K W, WANG M, et al. Sintering process and development status of bulletproof ceramics[J]. Ceramics, 2020(9): 24-27 (in Chinese). [7] 李辰冉, 谢志鹏, 赵 林. 碳化硅陶瓷材料烧结技术的研究与应用进展[J]. 陶瓷学报, 2020, 41(2): 137-149. LI C R, XIE Z P, ZHAO L. Research and application of sintering technologies for SiC ceramic materials: a review[J]. Journal of Ceramics, 2020, 41(2): 137-149 (in Chinese). [8] 刘海林. 碳化硅陶瓷研究[J]. 中国建材, 2015, 64(6): 84-87. LIU H L. Study on silicon carbide ceramics[J]. China Building Materials, 2015, 64(6): 84-87 (in Chinese). [9] KHODAEI M, YAGHOBIZADEH O, BAHARVANDI H R, et al. Effects of different sintering methods on the properties of SiC-TiC, SiC-TiB2 composites[J]. International Journal of Refractory Metals and Hard Materials, 2018, 70: 19-31. [10] 王晓波, 贺智勇, 王 峰, 等. 复杂结构碳化硅陶瓷制备工艺的研究进展[J]. 机械工程材料, 2021, 45(7): 1-6+34. WANG X B, HE Z Y, WANG F, et al. Research progress on preparation technology of silicon carbide ceramics with complex structure[J]. Materials for Mechanical Engineering, 2021, 45(7): 1-6+34 (in Chinese). [11] 张文毓. 装甲防护陶瓷材料的研究与应用[J]. 陶瓷, 2020(8): 16-20. ZHANG W Y. Research and application of armor protection ceramic materials[J]. Ceramics, 2020(8): 16-20 (in Chinese). [12] XIE Y, WANG T, WANG L M, et al. Numerical investigation of ballistic performance of SiC/TC4/UHMWPE composite armor against 7.62 mm AP projectile[J]. Ceramics International, 2022, 48(16): 24079-24090. [13] 鹿桂花, 朱丹丹, 周恒为. 助烧剂对无压液相烧结碳化硅陶瓷性能的影响[J]. 伊犁师范学院学报(自然科学版), 2019, 13(2): 25-32. LU G H, ZHU D D, ZHOU H W. Effect of sintering aid on properties of silicon carbide ceramics by pressureless liquid phase sintering[J]. Journal of Yili Normal University (Natural Science Edition), 2019, 13(2): 25-32 (in Chinese). [14] 李柏顺. 碳化硅的常压烧结及其熔盐侵蚀行为[D]. 沈阳: 东北大学, 2009. LI B S. Atmospheric pressure sintering of silicon carbide and its molten salt erosion behavior[D]. Shenyang: Northeastern University, 2009 (in Chinese). [15] PROCHAZKA S. Sintering of silicon carbide[M]//COOPER AR, HEUER AH. Mass Transport Phenomena in Ceramics. Boston, MA: Springer, 1975: 421-431. [16] LIU M, YANG Y, WEI Y Q, et al. Preparation of dense and high-purity SiC ceramics by pressureless solid-state-sintering[J]. Ceramics International, 2019, 45(16): 19771-19776. [17] ZHU Y, LUO D J, LI Z J, et al. Effect of sintering temperature on the mechanical properties and microstructures of pressureless-sintered B4C/SiC ceramic composite with carbon additive[J]. Journal of Alloys and Compounds, 2020, 820: 153153. [18] DATTA M S, BANDYOPADHYAY A K, CHAUDHURI B. Sintering of nano crystalline α silicon carbide by doping with boron carbide[J]. Bulletin of Materials Science, 2002, 25(3): 181-189. [19] 邢媛媛, 吴海波, 刘学建, 等. 颗粒级配对固相烧结碳化硅陶瓷的影响[J]. 无机材料学报, 2018, 33(11): 1167-1172. XING Y Y, WU H B, LIU X J, et al. Grain composition on solid-state-sintered SiC ceramics[J]. Journal of Inorganic Materials, 2018, 33(11): 1167-1172 (in Chinese). [20] ZHU Y, WANG F C, WANG Y W, et al. Mechanical properties and microstructure evolution of pressureless-sintered B4C-SiC ceramic composite with CeO2 additive[J]. Ceramics International, 2019, 45(12): 15108-15115. [21] GUSTAFSSON S, FALK L K L, LIDÉN E, et al. Pressureless sintered Al2O3-SiC nanocomposites[J]. Ceramics International, 2008, 34(7): 1609-1615. [22] GERMAN R M, SURI P, PARK S J. Liquid phase sintering[J]. Journal of Materials Science, 2009, 44: 1-39. [23] LIANG H Q, YAO X M, ZHANG H, et al. In situ toughening of pressureless liquid phase sintered α-SiC by using TiO2[J]. Ceramics International, 2014, 40(7): 10699-10704. [24] BUCEVAC D, BOSKOVIC S, MATOVIC B, et al. Toughening of SiC matrix with in-situ created TiB2 particles[J]. Ceramics International, 2010, 36(7): 2181-2188. [25] KIM K J, EOM J H, KIM Y W, et al. Highly resistive SiC ceramics sintered with Al2O3-AlN-Y2O3 additions[J]. Ceramics International, 2017, 43(6): 5343-5346. [26] GUO X Z, YANG H, ZHU X Y, et al. Preparation and properties of nano-SiC-based ceramic composites containing nano-TiN[J]. Scripta Materialia, 2013, 68(5): 281-284. [27] GUBERNAT A, STOBIERSKI L, ŁABAJ P. Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives[J]. Journal of the European Ceramic Society, 2007, 27(2/3): 781-789. [28] EOM J H, SEO Y K, KIM Y W. Mechanical and thermal properties of pressureless sintered silicon carbide ceramics with alumina-yttria-calcia[J]. Journal of the American Ceramic Society, 2016, 99(5): 1735-1741. [29] ZAWRAH M F, SHAW L. Liquid-phase sintering of SiC in presence of CaO[J]. Ceramics International, 2004, 30(5): 721-725. [30] KHODAEI M, YAGHOBIZADEH O, EHSANI N, et al. The effect of TiO2 additive on sinterability and properties of SiC-Al2O3-Y2O3 composite system[J]. Ceramics International, 2018, 44(14): 16535-16542. [31] AHMOYE D, BUCEVAC D, KRSTIC V D. Mechanical properties of reaction sintered SiC-TiC composite[J]. Ceramics International, 2018, 44(12): 14401-14407. [32] GUO W L, JIN Z G, XU T X, et al. Low-temperature pressureless sintering of SiC ceramics with Al2O3-Y2O3-La2O3 addition[J]. Key Engineering Materials, 2002, 224/225/226: 725-728. [33] LEE J Y, HINOKI T. Densification behavior of monolithic SiC fabricated by pressureless liquid phase sintering method[J]. Open Ceramics, 2022, 11: 100289. [34] LIANG H Q, YAO X M, ZHANG H, et al. The effect of TiC on the liquid phase sintering of SiC ceramics with Al2O3 and Y2O3 additives[J]. Key Engineering Materials, 2014, 602/603: 197-201. [35] KIM Y W, LEE S G, LEE Y I. Pressureless sintering of SiC-TiC composites with improved fracture toughness[J]. Journal of Materials Science, 2000, 35(22): 5569-5574. [36] YANG H, ZHANG L J, GUO X Z, et al. Pressureless sintering of silicon carbide ceramics containing zirconium diboride[J]. Ceramics International, 2011, 37(6): 2031-2035. [37] LEE S H, TANAKA H, KAGAWA Y. Spark plasma sintering and pressureless sintering of SiC using aluminum borocarbide additives[J]. Journal of the European Ceramic Society, 2009, 29(10): 2087-2095. [38] BUCEVAC D, MATOVIC B, BABIC B, et al. Effect of post-sintering heat treatment on mechanical properties and microstructure of SiC-TiB2 composites[J]. Materials Science and Engineering: A, 2011, 528(4/5): 2034-2041. [39] MIURA M, YOGO T, HIRANO S I. Phase separation and toughening of SiC-AIN solid-solution ceramics[J]. Journal of Materials Science, 1993, 28(14): 3859-3865. [40] EOM J H, SEO Y K, KIM Y W, et al. Effect of additive composition on mechanical properties of pressureless sintered silicon carbide ceramics sintered with alumina, aluminum nitride and yttria[J]. Metals and Materials International, 2015, 21(3): 525-530. [41] LEE C S, KIM Y W, CHO D H, et al. Microstructure and mechanical properties of self-Reinforced alpha-silicon carbide[J]. Ceramics International, 1998, 24(7): 489-495. [42] KIM S H, KIM Y W, MITOMO M. Microstructure and fracture toughness of liquid-phase-sintered β-SiC containing β-SiC whiskers as seeds[J]. Journal of Materials Science, 2003, 38(6): 1117-1121. [43] LEE S K, KIM C H. Effects of α-sic versus β-sic starting powders on microstructure and fracture toughness of sic sintered with Al2O3-Y2O3 additives[J]. Journal of the American Ceramic Society, 1994, 77(6): 1655-1658. [44] 吕学文. 碳化硅纳米颗粒增韧碳化硅陶瓷的制备及力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. LYU X W. Preparation and mechanical properties of silicon carbide ceramics toughened by silicon carbide nanoparticles[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). [45] 蒋梦婷. 低维材料增韧碳化硅陶瓷的制备和性能研究[D]. 湘潭: 湘潭大学, 2021. JIANG M T. Preparation and properties of low-dimensional materials toughened silicon carbide ceramics[D]. Xiangtan: Xiangtan University, 2021 (in Chinese). [46] 张玲洁. 颗粒、晶须强韧化碳化硅陶瓷及在密封环中的应用[D]. 杭州: 浙江大学, 2012. ZHANG L J. Particle and whisker toughened silicon carbide ceramics and its application in sealing ring[D]. Hangzhou: Zhejiang University, 2012 (in Chinese). [47] 陈智勇, 刘建寿, 徐颖强, 等. 碳纤维增韧碳化硅陶瓷基复合材料界面相的研究进展[J]. 陶瓷学报, 2019, 40(6): 701-709. CHEN Z Y, LIU J S, XU Y Q, et al. Research progress on the interphase of C/SiC composites[J]. Journal of Ceramics, 2019, 40(6): 701-709 (in Chinese). [48] 李少峰. 无压烧结碳化硅复合材料的制备与性能研究[J]. 佛山陶瓷, 2022, 32(1): 16-19. LI S F. The research on preparation process and properties of SiC composites by pressureless sintering[J]. Foshan Ceramics, 2022, 32(1): 16-19 (in Chinese). [49] LI Q S, ZHANG Y J, GONG H Y, et al. Enhanced fracture toughness of pressureless-sintered SiC ceramics by addition of graphene[J]. Journal of Materials Science & Technology, 2016, 32(7): 633-638. [50] 张秀玲. 碳化硅/石墨烯复合材料的制备及性能研究[D]. 银川: 北方民族大学, 2023. ZHANG X L. Preparation and properties of silicon carbide/graphene composites[D]. Yinchuan: Beifang University of Nationalities, 2023 (in Chinese). [51] BELMONTE M, NISTAL A, BOUTBIEN P, et al. Toughened and strengthened silicon carbide ceramics by adding graphene-based fillers[J]. Scripta Materialia, 2016, 113: 127-130. [52] MEDVEDOVSKI E. Ballistic performance of armour ceramics: influence of design and structure. Part 1[J]. Ceramics International, 2010, 36(7): 2103-2115. [53] 贾 冬. 碳化硅及陶瓷复合装甲的抗弹性能研究[D]. 北京: 北京交通大学, 2022. JIA D. Study on anti-ballistic performance of silicon carbide and ceramic composite armor[D]. Beijing: Beijing Jiaotong University, 2022 (in Chinese). [54] SHEN Z W, HU D A, YANG G, et al. Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet[J]. Composite Structures, 2019, 213: 209-219. [55] BERK B, KARAKUZU R, TOKSOY A K. An experimental and numerical investigation on ballistic performance of advanced composites[J]. Journal of Composite Materials, 2017, 51(25): 3467-3480. [56] 吴燕平, 燕青芝. 防弹装甲中的陶瓷材料[J]. 兵器材料科学与工程, 2017, 40(4): 135-140. WU Y P, YAN Q Z. Application of ceramics in armor protection[J]. Ordnance Material Science and Engineering, 2017, 40(4): 135-140 (in Chinese). [57] 秦溶蔓, 朱 波, 乔 琨, 等. 复合结构碳纤维防弹板的防弹性能仿真[J]. 工程科学学报, 2021, 43(10): 1346-1354. QIN R M, ZHU B, QIAO K, et al. Simulation study of the protective performance of composite structure carbon fiber bulletproof board[J]. Chinese Journal of Engineering, 2021, 43(10): 1346-1354 (in Chinese). [58] 刘 胜, 吕攀珂, 张 燕. 防弹陶瓷插板的应用性能研究[J]. 中国个体防护装备, 2010(6): 10-12. LIU S, LYU P K, ZHANG Y. Research on application performance of bulletproof ceramic plate[J]. China Personal Protective Equipment, 2010(6): 10-12 (in Chinese). [59] 丁思源, 刘贵民, 马金盾, 等. 轻量化防弹材料的研究现状及发展趋势[J]. 中国设备工程, 2022(22): 259-263. DING S Y, LIU G M, MA J D, et al. Research status and development trend of lightweight bulletproof materials[J]. China Plant Engineering, 2022(22): 259-263 (in Chinese). [60] 张友敏. SiC陶瓷/UHMWPE复合装甲弹道性能研究[D]. 长沙: 湖南大学, 2019. ZHANG Y M. Research on ballistic performance of SiC ceramic/UHMWPE composite armor[D]. Changsha: Hunan University, 2019 (in Chinese). [61] 李永鹏, 徐豫新, 张 健, 等. SiC陶瓷/UHMWPE纤维复合结构抗12.7 mm穿甲燃烧弹试验与仿真[J]. 兵工学报, 2022, 43(6): 1355-1364. LI Y P, XU Y X, ZHANG J, et al. Test and Simulation of SiC ceramic/UHMWPE fiber composite structure against 12.7 mm armor piercing incendiary projectile[J]. Acta Armamentarii, 2022, 43(6): 1355-1364 (in Chinese). [62] 孙 英. 枪弹对陶瓷/凯芙拉复合靶板的侵彻机理研究[D]. 南京: 南京理工大学, 2010. SUN Y. Study on penetration mechanism of bullets into ceramic/Kevlar composite target[D]. Nanjing: Nanjing University of Science and Technology, 2010 (in Chinese). [63] HU P C, CHENG Y S, ZHANG P, et al. A metal/UHMWPE/SiC multi-layered composite armor against ballistic impact of flat-nosed projectile[J]. Ceramics International, 2021, 47(16): 22497-22513. [64] 郝琛韬. 新型防弹复合材料[J]. 纺织科技进展, 2022(4): 10-13. HAO C T. New bulletproof composite material[J]. Progress in Textile Science & Technology, 2022(4): 10-13 (in Chinese). [65] 朱嘉琦, 曹文鑫. 高性能凯夫拉纳米纤维复合材料[C]//重庆: 第十届国际(中国)功能材料及其应用学术会议, 2019. ZHU J Q, CAO W X. High performance kevlar nanofiber composites[C]//Chongqing: 10th International Conference on Functional Materials and Their Applications, 2019 (in Chinese). [66] 张 磊, 孙 清, 王虎长, 等. E玻璃纤维增强环氧树脂基复合材料力学性能试验研究[J]. 电力建设, 2010, 31(9): 118-121. ZHANG L, SUN Q, WANG H C, et al. Experimental study on the mechanical properties of E-glass fiber/epoxy composite material[J]. Electric Power Construction, 2010, 31(9): 118-121 (in Chinese). [67] 张文睿, 贾 涵, 张 鑫, 等. 超高分子量聚乙烯薄膜制备方法与应用[J]. 中国塑料, 2023, 37(5): 1-8. ZHANG W R, JIA H, ZHANG X, et al. Preparation and applications of ultrahigh molecular weight polyethylene films[J]. China Plastics, 2023, 37(5): 1-8 (in Chinese). [68] 黄良钊, 张巨先. 弹丸对陶瓷靶侵彻试验中的约束效应研究[J]. 兵器材料科学与工程, 1999, 22(4): 13-17. HUANG L Z, ZHANG J X. Study of binding effect in test on impacting and biting ceramics target with ball[J]. Ordnance Material Science and Engineering, 1999, 22(4): 13-17 (in Chinese). [69] 位书航, 陈 克, 虞鑫海. 高性能新型防弹胶粘剂的制备与性能研究[J]. 中国胶粘剂, 2022, 31(5): 13-18+23. WEI S H, CHEN K, YU X H. Preparation and properties of new high-performance bulletproof adhesive[J]. China Adhesives, 2022, 31(5): 13-18+23 (in Chinese). [70] 孔晓鹏. 陶瓷复合装甲脱粘机理和抗多发打击研究[D]. 长沙: 国防科学技术大学, 2012. KONG X P. Research on desticking mechanism and anti-multiple strikes of ceramic composite armor[D]. Changsha: National University of Defense Technology, 2012 (in Chinese). [71] 罗 通. 纤维约束陶瓷复合靶板的制备及抗弹性能研究[D]. 北京: 北京理工大学, 2015. LUO T. Preparation and anti-elastic properties of fiber-confined ceramic composite target plate[D]. Beijing: Beijing Institute of Technology, 2015 (in Chinese). [72] 王曙光, 朱建生. 金属封装陶瓷复合装甲抗弹性能研究[J]. 弹道学报, 2009, 21(4): 68-71. WANG S G, ZHU J S. Study on antibullet performance of metal-ceramic composite armor[J]. Journal of Ballistics, 2009, 21(4): 68-71 (in Chinese). [73] 夏习持, 李永清, 侯海量, 等. 约束对陶瓷/钢复合靶板抗侵彻性能的影响[J]. 高压物理学报, 2023, 37(2): 143-158. XIA X C, LI Y Q, HOU H L, et al. Effect of constraints on the penetration resistance of ceramic/steel composite target plate[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 143-158 (in Chinese). [74] 杨 彬. 军用直升机装甲防护现状与展望[J]. 中国设备工程, 2021(2): 179-182. YANG B. Present situation and prospect of armored protection for military helicopters[J]. China Plant Engineering, 2021(2): 179-182 (in Chinese). [75] 沈志伟, 李伟萍, 黄献聪, 等. SiC、B4C及层状SiC/BN复合结构与防弹性能关系[J]. 硅酸盐学报, 2020, 48(6): 841-848. SHEN Z W, LI W P, HUANG X C, et al. Relationship of ballistic performance between SiC, B4C and laminated composite structure of SiC/BN ceramics[J]. Journal of the Chinese Ceramic Society, 2020, 48(6): 841-848 (in Chinese). [76] 蔺绍江, 胡 锐, 李金山, 等. SiC/Al层状梯度复合材料的制备与抗毁伤特性[J]. 材料科学与工程学报, 2005, 23(1): 35-37. LIN S J, HU R, LI J S, et al. Fabrication and bulletproof properties of SiC/Al laminated graded composites[J]. Journal of Materials Science and Engineering, 2005, 23(1): 35-37 (in Chinese). [77] 蒋宝权, 李玉龙, 刘元镛, 等. SiC增强颗粒分布规律对梯度装甲板抗侵彻过程的影响[J]. 爆炸与冲击, 2005, 25(6): 493-498. JIANG B Q, LI Y L, LIU Y Y, et al. Effects of SiC particle reinforcement distribution on the penetration of functionally graded armour[J]. Explosion and Shock Waves, 2005, 25(6): 493-498 (in Chinese). [78] 韩 辉, 李 军, 焦丽娟, 等. 陶瓷-金属复合材料在防弹领域的应用研究[J]. 材料导报, 2007, 21(2): 34-37. HAN H, LI J, JIAO L J, et al. Study on the application of ceramic-metal composite materials in bulletproof field[J]. Materials Review, 2007, 21(2): 34-37 (in Chinese). |
[1] | FANG Wanxian, ZENG Chen, ZHANG Ze, ZHANG Mingyu, HUANG Qizhong, GAO Ying. Sintering Property and Anti-Ablation Resistance of ZrB2-SiC Ceramics Modified by CeO2/MoSi2 [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1937-1949. |
[2] | HAN Yanxing, SHAO Sijie, SHI Tao, LAN Yingjia. Effect of Silicon Carbide Whiskers on Tensile Strength and Fracture Toughness of Cement-Based Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(7): 2300-2308. |
[3] | DONG Yiran, ZHAO Chenglin, GUO Wei, JIANG Congcong, HUANG Shifeng, CHENG Xin. Preparation of Foamed Ceramics from Granite Scrap and Marble Scrap [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(3): 939-947. |
[4] | HAO Hongjian, LI Haiyan, WAN Detian, BAO Yiwang, LI Yueming. Effect of Pre-Oxidation on Microstructure and Flexural Strength of Reaction Boned Silicon Carbide [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(8): 2889-2895. |
[5] | WU Zhenfei, WANG Yuechao, LU Lifang, ZHANG Hongyi. Physical Properties of Silicon Nitride Ceramics by Pressureless Sintering [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(5): 1782-1787. |
[6] | ZHONG Xinzi, CAO Liyun, HUANG Jianfeng, LIU Yijun, WANG Dongping, JI Yu, ZHANG Shuai, HU Yichen, NIU Wenfang, ZHANG Chenlei. Preparation and Mechanical Properties of CompositeThin Ceramic Tile [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(12): 4419-4424. |
[7] | PAN Bin, XIE Jun, CAI Qi, ZHANG Feng, XIONG Dehua, ZHANG Jihong, WANG Jing, HAN Jianjun. Effect of Foaming Agent on Hollow Structure of Quartz Glass Microspheres [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(1): 285-294. |
[8] | LU Pengfei, XU Guangwen, CUI Yanbin, WU Rongcheng. Preparation of Silicon Carbide Whiskers from Tire Semicoke [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 951-956. |
[9] | CHEN Haijun, XU Enxia, LI Miao, GAO Jinxing, GE Tiezhu. Effect of Heat Treatment Temperature on Properties of ZrO2 Fiber Composite ZrO2-C Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(10): 3219-3225. |
[10] | YANG Jinhua, AI Yingjun, CHEN Zimu, LIU Hu, QI Zhe, LYU Xiaoxu, JIAO Jian. Influence of Silicon Infiltration on Microstructure and Property of Graphite [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(1): 231-240. |
[11] | XUE Mao-quan;XU Wei;WANG Rong-xing;YANG Feng;LI Chang-sheng. Influence of Different Raw Material Systems on the Synthesis of Ti3SiC2and Its Corrosion Behavior [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(4): 1455-1461. |
[12] | JIN Hong;ZHANG Wei;DENG Xiang-yun;LI Jian-bao;ZHU Lu;YIN Pei-yang. Effect of Different Aluminum Sources on the Preparation and Properties of SiC/Cordierite Composite Porous Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(2): 403-410. |
[13] | ZENG Fan;CHEN Jian-jun;JIANG Min;FANG Ning-xiang. Properties of Reaction Bonded Silicon Carbide Ceramics Reinforced by SiC Nanowires [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(2): 586-590. |
[14] | HOU Si-yi;TIE Sheng-nian. Experimental Investigation on Recycling Silicon Carbide from Silicon Wafers Cutting Waste through Dual-Liquid Flotation [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(8): 2816-2821. |
[15] | XU Bao-hai;WANG Xiao-gang;LI Yang;WU Ze-min;REN Xiao-lei;DUAN Xiao-bo. Simulation and Analysis on the Heat Source in Parallel and Breathe Freely Furnace [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(4): 1401-1405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||