[1] 王 飞, 代 伟, 毛英辉, 等. 防护工程电磁屏蔽混凝土电磁损耗及屏蔽性能研究[J]. 混凝土, 2022(12): 185-188. WANG F, DAI W, MAO Y H, et al. Study on electromagnetic loss and shielding performance of concrete in protective engineering[J]. Concrete, 2022(12): 185-188 (in Chinese). [2] 何 林, 蔡永军, 李 强. 中子和伽马射线综合屏蔽材料研究进展[J]. 材料导报, 2018, 32(7): 1107-1113. HE L, CAI Y J, LI Q. Research progress in radiation shielding materials serving as the combined barrier against neutron and gamma-ray[J]. Materials Review, 2018, 32(7): 1107-1113 (in Chinese). [3] 杨 昭, 石建军, 许新春, 等. 蛇纹石混凝土研究应用进展[J]. 硅酸盐通报, 2023, 42(6): 1912-1920. YANG Z, SHI J J, XU X C, et al. Research and application progress of serpentine concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 1912-1920 (in Chinese). [4] 朱奇健. 不同材料对中子射线的屏蔽效果研究[J]. 海峡科学, 2023(8): 35-39. ZHU Q J. Study on the shielding effect of different materials on neutron rays [J]. Straits Science, 2023(8): 35-39 (in Chinese). [5] MASOUD M A, RASHAD A M, SAKR K, et al. Possibility of using different types of egyptian serpentine as fine and coarse aggregates for concrete production[J]. Materials and Structures, 2020, 53(4): 87. [6] ZAYED A M, MASOUD M A, SHAHIEN M G, et al. Physical, mechanical, and radiation attenuation properties of serpentine concrete containing boric acid[J]. Construction and Building Materials, 2021, 272: 121641. [7] LI Q, MA H, TANG Y, et al. Combined effect of NaAlO2 and NaOH on the early age hydration of Portland cement with a high concentration of borate solution[J]. Cement and Concrete Research, 2021, 144: 106430. [8] 张 强, 刘红彪. 饱水法测定混凝土孔隙率的试块尺寸优化研究[J]. 水道港口, 2017, 38(6): 604-609. ZHANG Q, LIU H B. Study on the optimization of test specimen size for concrete pore porosity testing with water displacement method[J]. Journal of Waterway and Harbor, 2017, 38(6): 604-609 (in Chinese). [9] 中船重工第七一九研究所. 电离辐射防护材料屏蔽性能检测方法: Q/719J131—2018[S]. 武汉: 中船重工第七一九研究院, 2018. No.719 Research Institute of China Shipbuilding Industry Group. Test method for shielding properties of ionizing radiation protective materials: Q/719J131—2018[S]. Wuhan: No.719 Research Institute of China Shipbuilding Industry Group, 2018 (in Chinese). [10] PENG G F, BIAN S H, GUO Z Q, et al. Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures[J]. Construction and Building Materials, 2008, 22(5): 948-955. [11] 顾连胜, 刘大为, 梁炯丰, 等. 高温后玄武岩纤维混凝土力学性能试验研究[J]. 混凝土, 2023(3): 74-76. GU L S, LIU D W, LIANG J F, et al. Experimental study on mechanical properties of basalt fiber reinforced concrete after high temperature[J]. Concrete, 2023(3): 74-76 (in Chinese). [12] 周建伟, 杨 文, 程宝军, 等. 超细粉煤灰和偏高岭土对高强混凝土耐热性能的影响[J]. 硅酸盐通报, 2020, 39(6): 1784-1790. ZHOU J W, YANG W, CHENG B J, et al. Effect of ultra-fine fly ash and metakaolin on heat resistance of high strength concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1784-1790 (in Chinese). [13] ZAYED A M, MASOUD M A, RASHAD A M, et al. Influence of heavyweight aggregates on the physico-mechanical and radiation attenuation properties of serpentine-based concrete[J]. Construction and Building Materials, 2020, 260: 120473. |