[1] 马 涛. 混合砂对混凝土性能的影响及其应用[D]. 徐州: 中国矿业大学, 2020. MA T. Influence of mixed sand on concrete performance and its application[D]. Xuzhou: China University of Mining and Technology, 2020 (in Chinese). [2] 黄维蓉, 晏茂豪, 仝 赞, 等. 混合砂对混凝土力学性能及孔隙结构的影响[J]. 重庆交通大学学报(自然科学版), 2023, 42(8): 23-29. HUANG W R, YAN M H, TONG Z, et al. Effect of mixed sand on the mechanical properties and pore structure of concrete[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(8): 23-29 (in Chinese). [3] 童小根, 张凯峰, 孟 刚, 等. 机制砂-石屑复合细集料对不同强度等级混凝土性能的影响[J]. 硅酸盐通报, 2021, 40(4): 1205-1212+1227. TONG X G, ZHANG K F, MENG G, et al. Influence of manufactured sand-stone chips composite fine aggregate on properties of different strength grade concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1205-1212+1227 (in Chinese). [4] SHEN W G, YANG Z G, CAO L H, et al. Characterization of manufactured sand: particle shape, surface texture and behavior in concrete[J]. Construction and Building Materials, 2016, 114: 595-601. [5] 刘战鳌. 机制砂中细粉对混凝土性能的影响及机理研究[D]. 武汉: 武汉理工大学, 2016. LIU Z A. Research on the effect and mechanism of microfines in manufactured sand on concrete properties[D]. Wuhan: Wuhan University of Technology, 2016 (in Chinese). [6] 尹江涛, 郭君华. 机制砂特性及其对混凝土性能影响研究现状[J]. 中国建材科技, 2023, 32(4): 38-40. YIN J T, GUO J H. Characteristics of machine-made sand and research of its impact on concrete performance[J]. China Building Materials Science & Technology, 2023, 32(4): 38-40 (in Chinese). [7] 储永浩. 聚羧酸系高性能减水剂在应用中存在问题的探讨[J]. 高速铁路技术, 2012, 3(1): 69-72. CHU Y H. Discussion of the application of high-performance water reducing agent with poly carboxylic acid[J]. High Speed Railway Technology, 2012, 3(1): 69-72 (in Chinese). [8] 唐凯靖, 刘来宝, 周 应. 岩性对机制砂特性及其混凝土性能的影响[J]. 混凝土, 2011(12): 62-63+66. TANG K J, LIU L B, ZHOU Y. Effects of lithology on properties of manufactured sand and the performance of the concrete with manufactured sand[J]. Concrete, 2011(12): 62-63+66 (in Chinese). [9] 闫光明, 殷素红, 郭文昊, 等. 砂岩机制砂颗粒特性及其配制的混凝土性能[J]. 材料研究与应用, 2019, 13(4): 299-306. YAN G M, YIN S H, GUO W H, et al. Sand particles characteristics of sandstone mechanism and properties of prepared concrete[J]. Materials Research and Application, 2019, 13(4): 299-306 (in Chinese). [10] 方国富, 游秋森, 张显羽, 等. 硅质机制砂对混凝土性能影响机理研究[J]. 新型建筑材料, 2022, 49(4): 81-84+144. FANG G F, YOU Q S, ZHANG X Y, et al. Study on influence mechanism of siliceous manufactured sand on concrete performance[J]. New Building Materials, 2022, 49(4): 81-84+144 (in Chinese). [11] 黄 炜, 郭余婷, 葛 培, 等. 基于响应面法的聚丙烯纤维再生砖骨料混凝土配合比优化[J]. 中南大学学报(自然科学版), 2022, 53(7): 2709-2718. HUANG W, GUO Y T, GE P, et al. Mixture ratio optimization of polypropylene fiber recycled brick aggregate concrete based on response surface methodology[J]. Journal of Central South University (Science and Technology), 2022, 53(7): 2709-2718 (in Chinese). [12] 朱祐增, 刘 浩, 黄 锐, 等. 基于响应面法的可控低强度材料配合比优化研究[J]. 硅酸盐通报, 2021, 40(8): 2670-2679. ZHU Y Z, LIU H, HUANG R, et al. Optimization of mixture ratio research of controlled low strength materials based on response surface methodology[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8): 2670-2679 (in Chinese). [13] 张兰芳, 刘丽娜, 曹 胜. 响应面方法优化碱激发矿渣-石粉水泥砂浆的研究[J]. 材料导报, 2017, 31(24): 15-19. ZHANG L F, LIU L N, CAO S. Optimization of alkali activated slag-limestone powder mortar by response surface methodology[J]. Materials Review, 2017, 31(24): 15-19 (in Chinese). [14] 王静文, 王 伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097. WANG J W, WANG W. Response surface based multi-objective optimization of basalt fiber reinforced foamed concrete[J]. Materials Reports, 2019, 33(24): 4092-4097 (in Chinese). [15] ZHANG Q Y, FENG X J, CHEN X D, et al. Mix design for recycled aggregate pervious concrete based on response surface methodology[J]. Construction and Building Materials, 2020, 259: 119776. [16] 中华人民共和国建设部. 混凝土用水标准: JGJ 63—2006[S]. 北京: 中国建筑工业出版社, 2006. Ministry of Construction of the People's Republic of China. Standard for water of concrete: JGJ 63—2006[S]. Beijing: China Construction Industry Press, 2006 (in Chinese). [17] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55—2011[S]. Beijing: China Construction Industry Press, 2011 (in Chinese). [18] 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2017. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of performance of ordinary concrete mix: GB/T 50080—2016[S]. Beijing: China Construction Industry Press, 2017 (in Chinese). [19] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese). [20] 中华人民共和国交通运输部. 公路工程水泥及水泥混凝土试验规程: JTG 3420—2020[S]. 北京: 人民交通出版社, 2021. Ministry of Transport of the People's Republic of China. Testing methods of cement and concrete for highway engineering: JTG 3420—2020[S]. Beijing: People's Communications Press, 2021 (in Chinese). [21] 罗发胜, 李 彬, 杜俊朋, 等. 骨料种类与级配对路面混凝土耐磨性能的影响[J]. 硅酸盐通报, 2022, 41(6): 1963-1972+2006. LUO F S, LI B, DU J P, et al. Effects of type and gradation of aggregate on wear resistance of road concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 1963-1972+2006 (in Chinese). |