[1] SEBASTIAN T, KOZIELSKI L, ERHART J. Co-sintered PZT ceramics for the piezoelectric transformers[J]. Ceramics International, 2015, 41(8): 9321-9327. [2] BOWEN C R, KIM H A, WEAVER P M, et al. Piezoelectric and ferroelectric materials and structures for energy harvesting applications[J]. Energy Environ Sci, 2014, 7(1): 25-44. [3] KIM E, LEE J, KIM D, et al. Solvent-responsive polymer nanocapsules with controlled permeability: encapsulation and release of a fluorescent dye by swelling and deswelling[J]. Chemical Communications, 2009(12): 1472-1474. [4] ELAHI H, MUNIR K, EUGENI M, et al. A review on applications of piezoelectric materials in aerospace industry[J]. Integrated Ferroelectrics, 2020, 211(1): 25-44. [5] TARIVERDIAN T, BEHNAMGHADER A, BROUKI MILAN P, et al. 3D-printed Barium strontium titanate-based piezoelectric scaffolds for bone tissue engineering[J]. Ceramics International, 2019, 45(11): 14029-14038. [6] KIM H, TORRES F, VILLAGRAN D, et al. 3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensor applications[J]. Macromolecular Materials and Engineering, 2017, 302(11): 1700229-1700234. [7] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93. [8] WUCHERER L, NINO J C, SUBHASH G. Mechanical properties of BaTiO3 open-porosity foams[J]. Journal of the European Ceramic Society, 2009, 29(10): 1987-1993. [9] SMITH A T, LACHANCE A M, ZENG S S, et al. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites[J]. Nano Materials Science, 2019, 1(1): 31-47. [10] SHUAI X G, ZENG Y, LI P R, et al. Fabrication of fine and complex lattice structure Al2O3 ceramic by digital light processing 3D printing technology[J]. Journal of Materials Science, 2020, 55(16): 6771-6782. [11] DONG Y, JIANG H Y, CHEN A N, et al. Near-zero-shrinkage Al2O3 ceramic foams with coral-like and hollow-sphere structures via selective laser sintering and reaction bonding[J]. Journal of the European Ceramic Society, 2021, 41(16): 239-246. [12] SHEN M H, QIN W, XING B H, et al. Mechanical properties of 3D printed ceramic cellular materials with triply periodic minimal surface architectures[J]. Journal of the European Ceramic Society, 2021, 41(2): 1481-1489. [13] CHEN A N, LI M, WU J M, et al. Enhancement mechanism of mechanical performance of highly porous mullite ceramics with bimodal pore structures prepared by selective laser sintering[J]. Journal of Alloys and Compounds, 2019, 776: 486-494. [14] LIU C L, DU Q P, ZHOU H, et al. 3D printing of lead zirconate titanate piezoelectric ceramics via digital light processing (DLP)[J]. Ceramics International, 2023, 49(17): 28492-28499. [15] CHEN Z Y, SONG X, LEI L W, et al. 3D printing of piezoelectric element for energy focusing and ultrasonic sensing[J]. Nano Energy, 2016, 27: 78-86. [16] JIANG Z J, CHENG L Y, ZENG Y, et al. 3D printing of porous scaffolds BaTiO3 piezoelectric ceramics and regulation of their mechanical and electrical properties[J]. Ceramics International, 2022, 48(5): 6477-6487. [17] SU Z H, ZHAO K L, YE Z J, et al. Overcoming the penetration-saturation trade-off in binder jet additive manufacturing via rapid in situ curing[J]. Additive Manufacturing, 2022, 59: 103157. [18] YANG L L, ZENG X J, ZHANG Y. 3D printing of alumina ceramic parts by heat-induced solidification with carrageenan[J]. Materials Letters, 2019, 255: 126564. [19] ZHAO L, JIANG Z L, MA S H, et al. Theoretical model based on stress waves and experimental verification of residual stress in stereolithography printed ZrO2 porous ceramics[J]. Ceramics International, 2022, 48(16): 23983-23988. [20] LIU S, MO L N, BI G Y, et al. DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry[J]. Ceramics International, 2021, 47(15): 21108-21116. [21] ZENG Y S, JIANG L M, SUN Y Z, et al. 3D-printing piezoelectric composite with honeycomb structure for ultrasonic devices[J]. Micromachines, 2020, 11(8): 713. [22] CHENG J, CHEN Y, WU J W, et al. 3D printing of BaTiO3 piezoelectric ceramics for a focused ultrasonic array[J]. Sensors, 2019, 19(19): 4078. [23] ZHANG D C, YANG Y D, RAO W F. Parameter optimization for printing Barium titanate piezoelectric ceramics through digital light processing[J]. Micromachines, 2023, 14(6): 1146. [24] GONG P, LI Y, XIN C X, et al. Multimaterial 3D-printing Barium titanate/carbonyl iron composites with bilayer-gradient honeycomb structure for adjustable broadband microwave absorption[J]. Ceramics International, 2022, 48(7): 9873-9881. [25] LIU K, ZHOU C Y, HU J M, et al. Fabrication of barium titanate ceramics via digital light processing 3D printing by using high refractive index monomer[J]. Journal of the European Ceramic Society, 2021, 41(12): 5909-5917. [26] LIU K, HU J M, DU Y Y, et al. Influence of particle size on 3D-printed piezoelectric ceramics via digital light processing with furnace sintering[J]. International Journal of Applied Ceramic Technology, 2022: 2461-2471. [27] LIU K, SUN Y F, SUN H J, et al. Effect of particle grading on the properties of photosensitive slurry and BaTiO3 piezoelectric ceramic via digital light processing 3D printing[J]. Journal of the European Ceramic Society, 2023, 43(8): 3266-3274. [28] LIU K, HE J C, LI T Y, et al. Fabrication of ceramic-polymer piezo-composites with triply periodic minimal interfaces via digital light processing[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2023, 2(4): 100104. [29] GRIFFITH M L, HALLORAN J W. Scattering of ultraviolet radiation in turbid suspensions[J]. Journal of Applied Physics, 1997, 81(6): 2538-2546. [30] BISWAS D, SHARMA P, PANWAR N S. Effect of sintering on the piezoelectric properties and microstructure of lead free (Ba1-xCaxZr0.1Ti0.9O3) (x=0.065) ceramics[J]. Science of Sintering, 2022, 54(2): 201-209. [31] ROSENTAL T, MIZRAHI S, KAMYSHNY A, et al. Particle-free compositions for printing dense 3D ceramic structures by digital light processing[J]. Virtual and Physical Prototyping, 2021, 16(3): 255-266. [32] ARLT G, HENNINGS D, DE WITH G. Dielectric properties of fine-grained barium titanate ceramics[J]. Journal of Applied Physics, 1985, 58(4): 1619-1625. [33] HOSHINA T. Size effect of barium titanate: fine particles and ceramics[J]. Journal of the Ceramic Society of Japan, 2013, 121(1410): 156-161. [34] HUAN Y, WANG X H, FANG J, et al. Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics[J]. Journal of the European Ceramic Society, 2014, 34(5): 1445-1448. [35] ZENG T, DONG X L, CHEN S T, et al. Processing and piezoelectric properties of porous PZT ceramics[J]. Ceramics International, 2007, 33(3): 395-399. |