BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (5): 1683-1693.
• Special Issue on 3D Printing Technology for Inorganic Non-Metallic Materials (II) • Previous Articles Next Articles
WU Chunqun, HAN Kang, LI Denghui, YANG Huashan
Received:
2024-03-01
Revised:
2024-03-29
Online:
2024-05-15
Published:
2024-06-06
CLC Number:
WU Chunqun, HAN Kang, LI Denghui, YANG Huashan. Effect of Attapulgite Clay on Working Performance and Compressive Strength of 3D Printed Cementitious Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1683-1693.
[1] 王瑜玲, 王春福, 张飞燕. 3D打印混凝土性能要求及相关外加剂研究进展[J]. 硅酸盐通报, 2021, 40(6): 1844-1854. WANG Y L, WANG C F, ZHANG F Y. Review on performance requirements and related admixtures of 3D printed concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1844-1854 (in Chinese). [2] 雷 斌, 马 勇, 熊悦辰, 等. 3D打印混凝土材料制备方法研究[J]. 混凝土, 2018(2): 145-149+153. LEI B, MA Y, XIONG Y C, et al. Study on preparation method of 3D printing concrete material[J]. Concrete, 2018(2): 145-149+153 (in Chinese). [3] 齐 甦, 李庆远, 崔小鹏, 等. 3D打印混凝土材料的研究现状与展望[J]. 混凝土, 2021(1): 36-39. QI S, LI Q Y, CUI X P, et al. Research status and prospect of 3D printed concrete materials[J]. Concrete, 2021(1): 36-39 (in Chinese). [4] 焦泽坤, 王栋民, 王启宝, 等. 3D打印混凝土材料可打印性的影响因素与测试方法[J]. 硅酸盐通报, 2021, 40(6): 1821-1831. JIAO Z K, WANG D M, WANG Q B, et al. Influencing factors and testing methods of printability of 3D printing concrete materials[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1821-1831 (in Chinese). [5] 常西栋, 李维红, 王 乾. 3D打印混凝土材料及性能测试研究进展[J]. 硅酸盐通报, 2019, 38(8): 2435-2441. CHANG X D, LI W H, WANG Q. Research progress of 3D printed concrete materials and its performance test[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2435-2441 (in Chinese). [6] HOU S D, XIAO J Z, DUAN Z H, et al. Fresh properties of 3D printed mortar with recycled powder[J]. Construction and Building Materials, 2021, 309: 125186. [7] PANDA B, UNLUER C, TAN M J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing[J]. Cement and Concrete Composites, 2018, 94: 307-314. [8] CHEN, LI, FIGUEIREDO C, et al. Limestone and calcined clay-based sustainable cementitious materials for 3D concrete printing: a fundamental study of extrudability and early-age strength development[J]. Applied Sciences, 2019, 9(9): 1809. [9] LONG W J, TAO J L, LIN C, et al. Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing[J]. Journal of Cleaner Production, 2019, 239: 118054. [10] 裴 强, 胡顺彩, 丁 彧. 粉煤灰改性水泥基材料在建筑3D打印中的研究现状及应用探索[J]. 煤炭技术, 2022, 41(9): 223-226. PEI Q, HU S C, DING Y. Research status and application exploration of cement-based materials modified by fly ash in building 3D printing[J]. Coal Technology, 2022, 41(9): 223-226 (in Chinese). [11] 范 杰, 邹书琴, 杨雨霏, 等. 大掺量粉煤灰型水泥砂浆的力学性能及干缩性能研究[J]. 混凝土, 2020(6): 130-133. FAN J, ZOU S Q, YANG Y F, et al. Experimental study on mechanical and drying shrinkage properties of high volume fly ash cement mortar[J]. Concrete, 2020(6): 130-133 (in Chinese). [12] 李维红, 常西栋, 王 乾, 等. 矿物掺合料对3D打印水泥基材料性能的影响[J]. 硅酸盐通报, 2020, 39(10): 3101-3107+3114. LI W H, CHANG X D, WANG Q, et al. Effect of mineral admixture on properties of 3D printing cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3101-3107+3114 (in Chinese). [13] 吴伟鸿, 罗素蓉, 欧 翔, 等. 矿物掺合料对3D打印水泥基材料力学各向异性的影响[J]. 福州大学学报(自然科学版), 2023, 51(2): 286-292. WU W H, LUO S R, OU X, et al. Effect of mineral admixtures on mechanical anisotropy of 3D printed cement-based materials[J]. Journal of Fuzhou University (Natural Science Edition), 2023, 51(2): 286-292 (in Chinese). [14] 王玉倩, 潘钢华, 张菁燕. 凹凸棒石粘土在建材中的应用研究[J]. 硅酸盐通报, 2010, 29(6): 1353-1357. WANG Y Q, PAN G H, ZHANG J Y. Research on application of attapulgite in building material[J]. Bulletin of the Chinese Ceramic Society, 2010, 29(6): 1353-1357 (in Chinese). [15] 吴寅瑞, 金 娇, 陈柏臻, 等. 坡缕石在建材领域的应用研究进展[J]. 硅酸盐通报, 2018, 37(8): 2436-2441. WU Y R, JIN J, CHEN B Z, et al. Review on the application of palygorskite in building materials[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8): 2436-2441 (in Chinese). [16] PANDA B, RUAN S Q, UNLUER C, et al. Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay[J]. Composites Part B: Engineering, 2019, 165: 75-83. [17] 黄艳玲, 元 强, 刘耀强, 等. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(增刊1): 254-260. HUANG Y L, YUAN Q, LIU Y Q, et al. Influence of additives on slipform construction performance of semi-fluidity self-compacting concrete[J]. Materials Reports, 2019, 33(supplement 1): 254-260 (in Chinese). [18] 余 越, 贾军红, 段 斌, 等. 凹凸棒土与纳米二氧化硅对高强石膏浆体3D可打印性的影响[J]. 硅酸盐通报, 2021, 40(6): 1987-1996. YU Y, JIA J H, DUAN B, et al. Effects of attapulgite and nano-silica on 3D printability of high strength gypsum plaster[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1987-1996 (in Chinese). [19] ZHOU W, ZHANG Y M, MA L, et al. Influence of printing parameters on 3D printing engineered cementitious composites (3DP-ECC)[J]. Cement and Concrete Composites, 2022, 130: 104562. [20] BUSWELL R A, LEAL DE SILVA W R, JONES S Z, et al. 3D printing using concrete extrusion: a roadmap for research[J]. Cement and Concrete Research, 2018, 112: 37-49. [21] MA G W, WANG L, JU Y. State-of-the-art of 3D printing technology of cementitious material: an emerging technique for construction[J]. Science China Technological Sciences, 2018, 61(4): 475-495. [22] YANG H S, CHE Y J. Recycling of aggregate micro fines as a partial replacement for fly ash in 3D printing cementitious materials[J]. Construction and Building Materials, 2022, 321: 126372. [23] MORTADA Y, MOHAMMAD M, MANSOOR B, et al. Development of test methods to evaluate the printability of concrete materials for additive manufacturing[J]. Materials, 2022, 15(18): 6486. [24] SONEBI M, ABDALQADER A, FAYYAD T, et al. Optimisation of rheological parameters, induced bleeding, permeability and mechanical properties of supersulfated cement grouts[J]. Construction and Building Materials, 2020, 262: 120078. [25] ZHANG Y, ZHANG Y S, LIU G J, et al. Fresh properties of a novel 3D printing concrete ink[J]. Construction and Building Materials, 2018, 174: 263-271. [26] YANG H S, CHE Y J, SHI M Y. Influences of calcium carbonate nanoparticles on the workability and strength of 3D printing cementitious materials containing limestone powder[J]. Journal of Building Engineering, 2021, 44: 102976. [27] KHALIL N, AOUAD G, EL CHEIKH K, et al. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars[J]. Construction and Building Materials, 2017, 157: 382-391. [28] 唐振中, 贾鲁涛, 林永权, 等. 钨尾矿粉对水泥基3D打印混凝土流变、水化及力学性能的影响[J]. 材料导报, 2023: 15. TANG Z Z, JIA L T, LIN Y Q, et al. Effect of tungsten tailing powder on rheology, hydration and mechanical properties of cement-based 3D printing concrete[J]. Materials Reports, 2023: 15 (in Chinese). [29] BAZ B, AOUAD G, KLEIB J, et al. Durability assessment and microstructural analysis of 3D printed concrete exposed to sulfuric acid environments[J]. Construction and Building Materials, 2021, 290: 123220. [30] 叶俊宏, 郑 怡, 余江滔, 等. 3D打印纤维增强混凝土材料研究进展[J]. 硅酸盐学报, 2021, 49(11): 2538-2548. YE J H, ZHENG Y, YU J T, et al. Research progress on 3D printable fiber reinforced concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2538-2548 (in Chinese). [31] PANDA B, CHANDRA PAUL S, JEN TAN M. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material[J]. Materials Letters, 2017, 209: 146-149. [32] CHE Y J, YANG H S. Hydration products, pore structure, and compressive strength of extrusion-based 3D printed cement pastes containing nano calcium carbonate[J]. Case Studies in Construction Materials, 2022, 17: e01590. [33] 王 里, 李丹利, 叶珂含, 等. 水泥基复合材料3D可打印性的量化、优化及标准化[J]. 硅酸盐通报, 2021, 40(6): 1814-1820. WANG L, LI D L, YE K H, et al. Quantification, optimization and standardization of 3D printability of cementitious composites[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1814-1820 (in Chinese). [34] MA G W, LI Z J, WANG L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing[J]. Construction and Building Materials, 2018, 162: 613-627. [35] VARELA H, BARLUENGA G, PALOMAR I. Influence of nanoclays on flowability and rheology of SCC pastes[J]. Construction and Building Materials, 2020, 243: 118285. [36] 阎 杰, 于旭涛, 刘兴隆, 等. 煅烧纳米凹凸棒土对再生混凝土性能的影响[J]. 科学技术与工程, 2023, 23(23): 10059-10066. YAN J, YU X T, LIU X L, et al. Effect of nano attapulgite on properties of recycled aggregate concrete[J]. Science Technology and Engineering, 2023, 23(23): 10059-10066 (in Chinese). [37] 刘 竞. 引气剂与凹凸棒土对新拌混凝土触变性能的影响研究[J]. 混凝土与水泥制品, 2016(4): 5-9. LIU J. Effecting research of air-entraining agent and attapulgite on thixotropy performance of fresh concrete[J]. China Concrete and Cement Products, 2016(4): 5-9 (in Chinese). [38] 阎 杰, 陆 超, 柏永清, 等. 煅烧纳米凹凸棒土对再生混凝土劈拉、抗折强度影响研究[J]. 江苏科技大学学报(自然科学版), 2023, 37(4): 111-118. YAN J, LU C, BAI Y Q, et al. Study on the influence of calcined nano-attapulgite on splitting and bending strength of recycled concrete[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2023, 37(4): 111-118 (in Chinese). [39] YAN J, LIU X L, WANG X T, et al. Influence of nano-attapulgite on compressive strength and microstructure of recycled aggregate concrete[J]. Cement and Concrete Composites, 2022, 134: 104788. [40] CHEN M X, LI L B, WANG J A, et al. Rheological parameters and building time of 3D printing sulphoaluminate cement paste modified by retarder and diatomite[J]. Construction and Building Materials, 2020, 234: 117391. [41] RAHUL A V, SANTHANAM M, MEENA H, et al. 3D printable concrete: mixture design and test methods[J]. Cement and Concrete Composites, 2019, 97: 13-23. [42] YUAN Q, ZHOU D J, KHAYAT K H, et al. On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs small amplitude oscillatory shear test[J]. Cement and Concrete Research, 2017, 99: 183-189. [43] 金 源, 徐嘉宾, 孙登田, 等. 纳米二氧化硅对白水泥基3D打印材料结构变形、流变及力学性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1855-1862. JIN Y, XU J B, SUN D T, et al. Effect of nano-silica on structural deformation, rheological and mechanical properties of 3D printed white Portland cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1855-1862 (in Chinese). [44] ROUSSEL N. A thixotropy model for fresh fluid concretes: theory, validation and applications[J]. Cement and Concrete Research, 2006, 36(10): 1797-1806. [45] PERROT A, PIERRE A, VITALONI S, et al. Prediction of lateral form pressure exerted by concrete at low casting rates[J]. Materials and Structures, 2015, 48(7): 2315-2322. [46] QIAN Y, KAWASHIMA S. Use of creep recovery protocol to measure static yield stress and structural rebuilding of fresh cement pastes[J]. Cement and Concrete Research, 2016, 90: 73-79. [47] QUANJI Z J, LOMBOY G R, WANG K J. Influence of nano-sized highly purified magnesium alumino silicate clay on thixotropic behavior of fresh cement pastes[J]. Construction and Building Materials, 2014, 69: 295-300. [48] YAO H, XIE Z L, LI Z M, et al. The relationship between the rheological behavior and interlayer bonding properties of 3D printing cementitious materials with the addition of attapulgite[J]. Construction and Building Materials, 2022, 316: 125809. [49] PANDA B, PAUL S C, HUI L J, et al. Additive manufacturing of geopolymer for sustainable built environment[J]. Journal of Cleaner Production, 2017, 167: 281-288. [50] MA G, R A, XIE P P, et al. 3D-printable aerogel-incorporated concrete: anisotropy influence on physical, mechanical, and thermal insulation properties[J]. Construction and Building Materials, 2022, 323: 126551. [51] YE J H, CUI C, YU J T, et al. Fresh and anisotropic-mechanical properties of 3D printable ultra-high ductile concrete with crumb rubber[J]. Composites Part B: Engineering, 2021, 211: 108639. [52] 侯少丹, 肖建庄, 段珍华. 3D打印细石混凝土调配及其可打印性和力学性能[J]. 建筑材料学报, 2022, 25(7): 730-736. HOU S D, XIAO J Z, DUAN Z H. Preparation of 3D printable concrete with small coarse aggregate and its printability and mechanical properties[J]. Journal of Building Materials, 2022, 25(7): 730-736 (in Chinese). [53] 李泽民, 元 强, 左胜浩, 等. 3D打印水泥基材料层间界面研究综述[J]. 中国建材科技, 2021, 30(3): 18-22. LI Z M, YUAN Q, ZUO S H, et al. A review on interlayer bonding of 3D printing cement-based materials[J]. China Building Materials Science & Technology, 2021, 30(3): 18-22 (in Chinese). [54] PAN T H, JIANG Y Q, HE H, et al. Effect of structural build-up on interlayer bond strength of 3D printed cement mortars[J]. Materials, 2021, 14(2): 236. |
[1] | WANG Xianggeng, CHEN Peiyuan, LI Jin, ZHAO Cheng, GU Zhicheng. Effect of Silica Fume Heat-Welded Modified Plastic Particles on Compressive Strength and Microstructure of Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 1975-1982. |
[2] | LIU Yuan, LIU Xiaotong, YANG Anxu, ZHANG Yuanyong, YANG Lin. Effect of Aluminum Sulfate Base Alkali-Free Liquid Accelerating Agent Modified by Fluorine Silicon Slag on Cement Properties [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2005-2011. |
[3] | YANG Shijie, ZHANG Shiping, NIU Longlong, ZHANG Shouwei. Crack Repairability of Cementitious Materials by Superabsorbent Polymers in Different Environmental Solutions [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2012-2021. |
[4] | GAN Xueyu, CHEN Shuai, GENG Haining, LI Zonggang, MA Haosen, CHEN Wei, HOU Suo, LI Qiu. Effect of Modified High Concentration Boric Acid Solution on Mechanical and Neutron Shielding Properties of Serpentine Shielded Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2047-2055. |
[5] | LI Luoyin, DONG Shuibo, LIU Haifeng, YONG Wenjie, CHE Jialing. Strength Prediction and Ultrasonic Testing of Desert Sand Concrete after High Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2073-2083. |
[6] | WANG Fajing, WANG Xinjie, ZHU Pinghua, LIU Xiaolin. Influences of Coarse Aggregate Replacement Ratios on High-Temperature Performance of Recycled Concrete with Manufactured Sand [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2084-2092. |
[7] | ZHOU Mingkai, RAO Ke, MENG Xiuyuan, WANG Yuqiang. Preparation and High-Strength Micro-Expansion Mechanism of CFB Fly Ash Compaction Slurry [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2157-2167. |
[8] | LU Fanjie, LI Changcheng, YE Jiayuan, LIU Qiming. Effect of Composite Fluxing Agent on Melting Temperature and Phase of Fly Ash from Waste Incineration [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2206-2216. |
[9] | SHEN Tianzi, LI Wenfeng, GUO Huishi, CAO Jinjin, HOU Yonggai, DU Juan. Effects of Al2O3 Particle Sizes on Microstructure and Properties of CA6 Lightweight Ceramic Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2250-2255. |
[10] | MAO Yufei, GUO Zenghui, CHEN Hui, ZHANG Jie, LUO Jianlin, LIU Chao, SHANG Huaishuai. Study Progress on Reinforcement Technology for 3D Printing Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1557-1568. |
[11] | YANG Chenqian, LIU Chao, CHEN Peng, LIU Kai. Current Research Status and Prospects of 3D Printing Glass Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1569-1587. |
[12] | ZHOU Qingxuan, WANG Yang, HAN Zhuoqun, ZHAO Zhicheng, CHU Wei, ZHAO Jie, LIU Jia, WANG Yingying, CHENG Zhiqiang, LI Ling, LIU Futian. Research Progress of Stereolithography 3D Printing of Silicon Nitride Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1588-1599. |
[13] | YANG Yan'an, LI He, MU Baoxia. Research Progress of Ceramic 3D Printing Technology [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1600-1614. |
[14] | LI Fei, LU Ya, LI Weihan, XU Xiaoming, ZHOU Huajie, ZHANG Zheng, ZHOU Li'an. Study on Printability of Mortar for 3D Printing [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1615-1622. |
[15] | PENG Shaobin, GUAN Xuemao. Research on Rheological Properties, Printability and Mechanical Properties of 3D Printing Coal Gangue Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1623-1632. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||