BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (5): 1588-1599.
• Special Issue on 3D Printing Technology for Inorganic Non-Metallic Materials (II) • Previous Articles Next Articles
ZHOU Qingxuan1, WANG Yang1, HAN Zhuoqun1, ZHAO Zhicheng1, CHU Wei2, ZHAO Jie2, LIU Jia2, WANG Yingying2, CHENG Zhiqiang2, LI Ling2, LIU Futian1
Received:
2024-01-17
Revised:
2024-03-29
Online:
2024-05-15
Published:
2024-06-06
CLC Number:
ZHOU Qingxuan, WANG Yang, HAN Zhuoqun, ZHAO Zhicheng, CHU Wei, ZHAO Jie, LIU Jia, WANG Yingying, CHENG Zhiqiang, LI Ling, LIU Futian. Research Progress of Stereolithography 3D Printing of Silicon Nitride Ceramics[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1588-1599.
[1] TYUGANOVA M A, ZUBKOVA N S, BUTYLKINA N G. Polymeric fibre materials with low combustibility: a review[J]. Fibre Chemistry, 1994, 26(5): 294-305. [2] XUE W J, YI J, XIE Z P, et al. Enhanced fracture toughness of silicon nitride ceramics at cryogenic temperatures[J]. Scripta Materialia, 2012, 66(11): 891-894. [3] KRSTIC Z, KRSTIC V D. Silicon nitride: the engineering material of the future[J]. Journal of Materials Science, 2012, 47(2): 535-552. [4] ZHOU Y, HYUGA H, KUSANO D, et al. Development of high-thermal-conductivity silicon nitride ceramics[J]. Journal of Asian Ceramic Societies, 2015, 3(3): 221-229. [5] BOCANEGRA-BERNAL M H, MATOVIC B. Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures[J]. Materials Science and Engineering: A, 2010, 527(6): 1314-1338. [6] YANG Y, SONG X, LI X J, et al. Recent progress in biomimetic additive manufacturing technology: from materials to functional structures[J]. Advanced Materials, 2018, 30(36): 1706539. [7] CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39(4): 661-687. [8] ABOULIATIM Y, CHARTIER T, ABELARD P, et al. Optical characterization of stereolithography alumina suspensions using the Kubelka-Munk model[J]. Journal of the European Ceramic Society, 2009, 29(5): 919-924. [9] ZOCCA A, COLOMBO P, GOMES C M, et al. Additive manufacturing of ceramics: issues, potentialities, and opportunities[J]. Journal of the American Ceramic Society, 2015, 98(7): 1983-2001. [10] 王 飞, 李 伶, 宋 涛, 等. 基于熔融沉积技术的多孔氮化硅陶瓷制备与烧结研究[J]. 现代技术陶瓷, 2023, 44(增刊1): 461-472. WANG F, LI L, SONG T, et al. Study on preparation and sintering of porous silicon nitride ceramics based on fused deposition technology[J]. Advanced Ceramics, 2023, 44(supplement 1): 461-472 (in Chinese). [11] DONG X J, WU J Q, YU H L, et al. Additive manufacturing of silicon nitride ceramics: a review of advances and perspectives[J]. International Journal of Applied Ceramic Technology, 2022, 19(6): 2929-2949. [12] ZANCHETTA E, CATTALDO M, FRANCHIN G, et al. Stereolithography of SiOC ceramic microcomponents[J]. Advanced Materials, 2016, 28(2): 370-376. [13] ZHANG K Q, HE R J, XIE C, et al. Photosensitive ZrO2 suspensions for stereolithography[J]. Ceramics International, 2019, 45(9): 12189-12195. [14] SUN J X, BINNER J, BAI J M. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography[J]. Journal of the European Ceramic Society, 2019, 39(4): 1660-1667. [15] SUN J X, BINNER J, BAI J M. 3D printing of zirconia via digital light processing: optimization of slurry and debinding process[J]. Journal of the European Ceramic Society, 2020, 40(15): 5837-5844. [16] ZHANG K Q, MENG Q Y, ZHANG X Q, et al. Roles of solid loading in stereolithography additive manufacturing of ZrO2 ceramic[J]. International Journal of Refractory Metals and Hard Materials, 2021, 99: 105604. [17] HAN Z Q, LIU S H, QIU K, et al. The enhanced ZrO2 produced by DLP via a reliable plasticizer and its dental application[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141: 105751. [18] WANG Y, ZHOU Q X, HAN Z Q, et al. Towards high strengthening efficiency of equiaxed and platelet-shaped alumina reinforced zirconia ceramics with textured microstructure using DLP-based stereolithography[J]. Ceramics International, 2024, 50(1): 2467-2478. [19] XING H Y, ZOU B, LAI Q G, et al. Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent[J]. Powder Technology, 2018, 338: 153-161. [20] ZHANG S, SHA N, ZHAO Z. Surface modification of α-Al2O3 with dicarboxylic acids for the preparation of UV-curable ceramic suspensions[J]. Journal of the European Ceramic Society, 2017, 37(4): 1607-1616. [21] GU Y, DUAN W Y, WANG T C, et al. Additive manufacturing of Al2O3 ceramic core with applicable microstructure and mechanical properties via digital light processing of high solid loading slurry[J]. Ceramics International, 2023, 49(15): 25216-25224. [22] GU Q C, SUN L, JI X Y, et al. High-performance and high-precision Al2O3 architectures enabled by high-solid-loading, graphene-containing slurries for top-down DLP 3D printing[J]. Journal of the European Ceramic Society, 2023, 43(1): 130-142. [23] XU X H, ZHOU S X, WU J F, et al. Inter-particle interactions of alumina powders in UV-curable suspensions for DLP stereolithography and its effect on rheology, solid loading, and self-leveling behavior[J]. Journal of the European Ceramic Society, 2021, 41(4): 2763-2774. [24] WANG Y Y, WANG Z Y, LIU S H, et al. Additive manufacturing of silica ceramics from aqueous acrylamide based suspension[J]. Ceramics International, 2019, 45(17): 21328-21332. [25] KÓCS L, TEGZE B, ALBERT E, et al. Ammonia-vapour-induced two-layer transformation of mesoporous silica coatings on various substrates[J]. Vacuum, 2021, 192: 110415. [26] BAE C J, KIM D, HALLORAN J W. Mechanical and kinetic studies on the refractory fused silica of integrally cored ceramic mold fabricated by additive manufacturing[J]. Journal of the European Ceramic Society, 2019, 39(2/3): 618-623. [27] 刘 雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12. LIU Y, CHEN Z W. Research progress in photopolymerization-based 3D printing technology of ceramics[J]. Journal of Materials Engineering, 2020, 48(9): 1-12 (in Chinese). [28] HINCZEWSKI C, CORBEL S, CHARTIER T. Ceramic suspensions suitable for stereolithography[J]. Journal of the European Ceramic Society, 1998, 18(6): 583-590. [29] 顾 玥, 王 功, 段文艳, 等. 陶瓷光固化成型技术的应用与展望[J]. 硅酸盐学报, 2021, 49(5): 867-877. GU Y, WANG G, DUAN W Y, et al. Application and prospect of photopolymerization technologies for ceramics[J]. Journal of the Chinese Ceramic Society, 2021, 49(5): 867-877 (in Chinese). [30] ZAKERI S, VIPPOLA M, LEVÄNEN E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography[J]. Additive Manufacturing, 2020, 35: 101177. [31] 杨 勇, 郭啸天, 唐 杰, 等. 非氧化物陶瓷光固化增材制造研究进展及展望[J]. 无机材料学报, 2022, 37(3): 267-277. YANG Y, GUO X T, TANG J, et al. Research progress and prospects of non-oxide ceramic in stereolithography additive manufacturing[J]. Journal of Inorganic Materials, 2022, 37(3): 267-277 (in Chinese). [32] 韩卓群, 李 伶, 刘时浩, 等. 光固化ZrO2陶瓷料浆的流变性能研究[J]. 硅酸盐通报, 2021, 40(6): 1965-1971. HAN Z Q, LI L, LIU S H, et al. Research on rheological properties of stereolithography ZrO2 ceramic slurry[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1965-1971 (in Chinese). [33] SUBBANNA M, KAPUR P C, PRADIP. Role of powder size, packing, solid loading and dispersion in colloidal processing of ceramics[J]. Ceramics International, 2002, 28(4): 401-405. [34] GRIFFITH M L, HALLORAN J W. Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 1996, 79(10): 2601-2608. [35] LIU S, MO L N, BI G Y, et al. DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry[J]. Ceramics International, 2021, 47(15): 21108-21116. [36] LIN L F, WU H D, XU Y R, et al. Fabrication of dense aluminum nitride ceramics via digital light processing-based stereolithography[J]. Materials Chemistry and Physics, 2020, 249: 122969. [37] LIU Y, ZHAN L N, HE Y, et al. Stereolithographical fabrication of dense Si3N4 ceramics by slurry optimization and pressure sintering[J]. Ceramics International, 2020, 46(2): 2063-2071. [38] HALLORAN J W. Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization[J]. Annual Review of Materials Research, 2016, 46: 19-40. [39] MU Y H, CHEN J W, AN X L, et al. Effect of synergism of solid loading and sintering temperature on microstructural evolution and mechanical properties of 60vol% high solid loading ceramic core obtained through stereolithography 3D printing[J]. Journal of the European Ceramic Society, 2023, 43(2): 661-675. [40] GRIFFITH M L, HALLORAN J W. Scattering of ultraviolet radiation in turbid suspensions[J]. Journal of Applied Physics, 1997, 81(6): 2538-2546. [41] LI X B, ZHANG J X, DUAN Y S, et al. Rheology and curability characterization of photosensitive slurries for 3D printing of Si3N4 ceramics[J]. Applied Sciences, 2020, 10(18): 6438. [42] HUANG R J, JIANG Q G, WU H D, et al. Fabrication of complex shaped ceramic parts with surface-oxidized Si3N4 powder via digital light processing based stereolithography method[J]. Ceramics International, 2019, 45(4): 5158-5162. [43] LI Y H, HUANG S W, WANG S L, et al. Research on the effects of surface modification of ceramic powder on cure performance during digital light processing (DLP)[J]. Ceramics International, 2022, 48(3): 3652-3658. [44] LIU Y, CHENG L J, LI H, et al. Formation mechanism of stereolithography of Si3N4 slurry using silane coupling agent as modifier and dispersant[J]. Ceramics International, 2020, 46(10): 14583-14590. [45] LI M, HUANG H L, WU J M, et al. Preparation and properties of Si3N4 ceramics via digital light processing using Si3N4 powder coated with Al2O3-Y2O3 sintering additives[J]. Additive Manufacturing, 2022, 53: 102713. [46] LIU Y, ZHAN L N, WEN L, et al. Effects of particle size and color on photocuring performance of Si3N4 ceramic slurry by stereolithography[J]. Journal of the European Ceramic Society, 2021, 41(4): 2386-2394. [47] HUANG S W, LI Y H, YANG P, et al. Cure behaviour and mechanical properties of Si3N4 ceramics with bimodal particle size distribution prepared using digital light processing[J]. Ceramics International, 2023, 49(8): 12166-12172. [48] LIN L F, WU H D, HUANG Z Q, et al. Effect of monomers with different functionalities on stability, rheology, and curing behavior of ceramic suspensions[J]. Materials Chemistry and Physics, 2022, 275: 125243. [49] ZOU W J, YANG P, LIN L F, et al. Improving cure performance of Si3N4 suspension with a high refractive index resin for stereolithography-based additive manufacturing[J]. Ceramics International, 2022, 48(9): 12569-12577. [50] CAO C R, WANG C, ZHAO Z. Optimization of curing behavior of Si3N4 UV resin for photopolymerization 3D printing[J]. IOP Conference Series: Materials Science and Engineering, 2019, 678(1): 012013. [51] SHEN M H, FU R L, LIU H B, et al. Photosensitive Si3N4 slurry with combined benefits of low viscosity and large cured depth for digital light processing 3D printing[J]. Journal of the European Ceramic Society, 2023, 43(3): 881-888. [52] CHEN R F, DUAN W Y, WANG G, et al. Preparation of broadband transparent Si3N4-SiO2 ceramics by digital light processing (DLP) 3D printing technology[J]. Journal of the European Ceramic Society, 2021, 41(11): 5495-5504. [53] TIAN C, WU J M, WU Y R, et al. Effect of polystyrene addition on properties of porous Si3N4 ceramics fabricated by digital light processing[J]. Ceramics International, 2023, 49(16): 27040-27049. [54] WU Y R, TIAN C, WU J M, et al. Influence of the content of polymethyl methacrylate on the properties of porous Si3N4 ceramics fabricated by digital light processing[J]. Ceramics International, 2023, 49(19): 31228-31235. [55] WU Y R, TIAN C, WU J M, et al. Influence of the ratio of sintering aids on the properties of porous Si3N4 ceramics fabricated by digital light processing[J]. Ceramics International, 2023, 49(20): 33004-33010. |
[1] | MAO Yufei, GUO Zenghui, CHEN Hui, ZHANG Jie, LUO Jianlin, LIU Chao, SHANG Huaishuai. Study Progress on Reinforcement Technology for 3D Printing Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1557-1568. |
[2] | YANG Chenqian, LIU Chao, CHEN Peng, LIU Kai. Current Research Status and Prospects of 3D Printing Glass Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1569-1587. |
[3] | YANG Yan'an, LI He, MU Baoxia. Research Progress of Ceramic 3D Printing Technology [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1600-1614. |
[4] | LI Fei, LU Ya, LI Weihan, XU Xiaoming, ZHOU Huajie, ZHANG Zheng, ZHOU Li'an. Study on Printability of Mortar for 3D Printing [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1615-1622. |
[5] | PENG Shaobin, GUAN Xuemao. Research on Rheological Properties, Printability and Mechanical Properties of 3D Printing Coal Gangue Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1623-1632. |
[6] | MA Xiaoyao, JIAN Shouwei, LI Baodong, HUANG Jianxiang, GAO Xin, XUE Wenhao, WANG Caifeng. Effects of Different Inorganic Thickeners on Properties of 3D Printed Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1642-1650. |
[7] | ZHANG Zhaorui, LUO Surong, LIN Xin. Anisotropic of 3D Printed Cement-Based Materials Reinforced with Metakaolin and Limestone Powder [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1651-1662. |
[8] | LI Nan, ZHONG Jianjun, DENG Yongjie, LIANG Yun, WAN Detian, LI Weihong, LI Dongwei. 3D Printing Performance of Metakaolin Modified Light Burnt Magnesia-Based Magnesium Phosphate Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1663-1672. |
[9] | LIU Xiaojiang, LI Zhijian. Effect of Fly Ash on Water Resistance of Powder Bed 3D Printing Magnesium Phosphate Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1673-1682. |
[10] | WU Chunqun, HAN Kang, LI Denghui, YANG Huashan. Effect of Attapulgite Clay on Working Performance and Compressive Strength of 3D Printed Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1683-1693. |
[11] | BAI Songlin, GAO Yimin, ZHAO Ziqiao, ZHANG Ning, LI Gang, LIU Shilong, YANG Min. Digital Design and Construction of Medium and Small Span Concrete 3D Printed Box Arch Bridge [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1739-1747. |
[12] | WANG Caifeng, JIAN Shouwei, LI Baodong, HUANG Jianxiang, GAO Xin, MA Xiaoyao, XUE Wenhao. Influence of Attapulgite Clay on Basic Properties and Printability of Gypsum 3D Printing Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1748-1755. |
[13] | CHEN Hao, CHU Chengyi, WANG Yuting, BAO Xixi, QIU Zhuohao, CHENG Yuchuan, GUO Jianjun, SHAN Xinggang, SUN Aihua. Study on 3D Printing Flexible SiO2 Aerogel Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1756-1763. |
[14] | XUE Wei, DONG Tianyuan, HUANG Chen, HOU Zhishan, CAO Yu, WEI Xinlei. Structure Optimal Design of Fusion TPMS Alumina Ceramic Scaffold Prepared by SLA Printing [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1784-1795. |
[15] | ZHAO Ming, LANG Yudong, ZHAO Ziyu, LIU Xin, ZHAO Qian, CHEN Yang. Application Progress of High-Throughput and Efficient Preparation Technology in Inorganic Glass Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1219-1229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||