[1] MAO F F, LIU J D, HU J Y, et al. From Ag2Zr(IO3)6 to LaZr(IO3)5F2: a case of constructing wide-band-gap birefringent materials through chemical cosubstitution[J]. Chemistry-an Asian Journal, 2020, 15(21): 3487-3493. [2] CHEN J, HU C L, MAO F F, et al. LiMg(IO3)3: an excellent SHG material designed by single-site aliovalent substitution[J]. Chemical Science, 2019, 10(47): 10870-10875. [3] 姜晓晴. 碘酸盐-卤化物的合成和光学性能研究[D]. 天津: 天津理工大学, 2022. JIANG X Q. Synthesis and optical properties of iodate-halide[D]. Tianjin: Tianjin University of Technology, 2022 (in Chinese). [4] LIU R Q, WU H P, YU H W, et al. Synthesis and characterization of three new rare-earth orthoborates: Ba2MgY2(BO3)4, Ba2CdY2(BO3)4, and Ba2CdSc(BO3)3[J]. Dalton Transactions, 2020, 49(31): 10874-10879. [5] OK K M, HALASYAMANI P S. New metal iodates: syntheses, structures, and characterizations of noncentrosymmetric La(IO3)3 and NaYI4O12 and centrosymmetric β-Cs2I4O11 and Rb2I6O15(OH)2·H2O[J]. Inorganic Chemistry, 2005, 44(25): 9353-9359. [6] MITOUDI V E, ZHANG W G, DENISOVA K, et al. Synthesis and characterization of two new second harmonic generation active iodates: K3Sc(IO3)6 and KSc(IO3)3Cl[J]. ACS Omega, 2020, 5(10): 5235-5240. [7] MA N, HU C L, CHEN J, et al. CaCe(IO3)3(IO3F)F: a promising nonlinear optical material containing both IO-3 and IO3F2- anions[J]. Inorganic Chemistry Frontiers, 2022, 9(21): 5478-5485. [8] HUANG H W, HE Y, HE R, et al. Y(IO3)3 as a novel photocatalyst: synthesis, characterization, and highly efficient photocatalytic activity[J]. Inorganic Chemistry, 2014, 53(15): 8114-8119. [9] WANG W J, CHENG H F, HUANG B B, et al. Ln(IO3)3 (Ln=Ce, Nd, Eu, Gd, Er, Yb) polycrystals as novel photocatalysts for efficient decontamination under ultraviolet light irradiation[J]. Inorganic Chemistry, 2014, 53(10): 4989-4993. [10] SUN C F, HU C L, LING J B, et al. BaNbO(IO3)5: a new polar material with a very large SHG response[J]. Journal of the American Chemical Society, 2009, 131, 9486-9487. [11] CHEN J, HU C L, MAO J G, et al. K3V2O3F4(IO3)3: a high-performance SHG crystal containing both five and six-coordinated V5+ cations[J]. Chemical Science, 2022, 13: 454-460. [12] SPEK A L. Single-crystal structure validation with the program PLATON[J]. Journal of Applied Crystallography, 2003, 36(1): 7-13. [13] CHEN J, HU C L, MAO F F, et al. REI5O14 (RE=Y and Gd): promising SHG materials featuring the semicircle-shaped I5O3-14 polyiodate anion[J]. Angewandte Chemie, 2019, 58: 11666-11669. [14] BROWN I D. The chemical bond in inorganic chemistry: the bond valence model[M]. Oxford: Oxford University Press, 2002. [15] BROWN I D, ALTERMATT D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database[J]. Acta Crystallographica Section B Structural Science, 1985, 41(4): 244-247. [16] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570. [17] ERNZERHOF M, SCUSERIA G E. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional[J]. The Journal of Chemical Physics, 1999, 110(11): 5029-5036. [18] MAO F F, HU C L, CHEN J, et al. HBa2. 5(IO3)6(I2O5) and HBa(IO3)(I4O11): explorations of second-order nonlinear optical materials in the alkali-earth polyiodate system[J]. Inorganic Chemistry, 2019, 58(6): 3982-3989. [19] WANG D D, JIANG X Q, GONG P F, et al. A new I3O3-9 group constructed from IO-3 and IO5-5 anion units in Cs3[Ga2O(I3O9)(IO3)4(HIO3)][J]. CrystEngComm, 2022, 24(1): 77-82. [20] SYKORA R E, OK K M, HALASYAMANI P S, et al. Structural modulation of molybdenyl iodate architectures by alkali metal cations in AMoO3(IO3) (A=K, Rb, Cs): a facile route to new polar materials with large SHG responses[J]. Journal of the American Chemical Society, 2002, 124(9): 1951-1957. [21] CHEN Q Q, HU C L, YAO L J, et al. Cd2(IO3)(PO4) and Cd1. 62Mg0. 38(IO3)(PO4): metal iodate-phosphates with large SHG responses and wide band gaps[J]. Chemical Communications, 2022, 58(55): 7694-7697. [22] WU Q, LIU H M, JIANG F C, et al. RbIO3 and RbIO2F2: two promising nonlinear optical materials in mid-IR region and influence of partially replacing oxygen with fluorine for improving laser damage threshold[J]. Chemistry of Materials, 2016, 28(5): 1413-1418. [23] RASHKEEV S N, LAMBRECHT W R L, SEGALL B. Efficientab initiomethod for the calculation of frequency-dependent second-order optical response in semiconductors[J]. Physical Review B, 1998, 57(7): 3905-3919. [24] ABUDOUWUFU T, ZHANG M, CHENG S C, et al. Ce(IO3)2F2·H2O: the first rare-earth-metal iodate fluoride with large second harmonic generation response[J]. Chemistry-A European Journal, 2019, 25(5): 1221-1226. [25] CHEN J, CHEN Q Q, MAO F F, et al. Ba4Ag5(IO3)6(I3O8)3(I4O11)2: a nonlinear optical crystal containing two types of polyiodate anions[J]. Inorganic Chemistry Frontiers, 2022, 9(22): 5917-5925. [26] CAO Z B, YUE Y C, YAO J Y, et al. Bi2(IO4)(IO3)3: a new potential infrared nonlinear optical material containing [IO4]3- anion[J]. Inorganic Chemistry, 2011, 50(24): 12818-12822. |