[1] LIU Z, CAI C S, LIU F Y, et al. Feasibility study of loess stabilization with fly ash-based geopolymer[J]. Journal of Materials in Civil Engineering, 2016, 28(5): 04016003. [2] WANG F Y, PANG W C, QIN X Y, et al. Durability-aimed design criteria of cement-stabilized loess subgrade for railway[J]. Applied Sciences, 2021, 11(11): 5061. [3] 侯 鑫, 马 巍, 李国玉, 等. 冻融循环对硅酸钠固化黄土力学性质的影响[J]. 冰川冻土, 2018, 40(1): 86-93. HOU X, MA W, LI G Y, et al. Effects of freezing-thawing cycles on mechanical properties of loess solidified by sodium silicate[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 86-93 (in Chinese). [4] SINGH S, ASWATH M U, RANGANATH R V. Effect of mechanical activation of red mud on the strength of geopolymer binder[J]. Construction and Building Materials, 2018, 177: 91-101. [5] 王永宝, 原 元, 赵人达, 等. 赤泥地聚物混凝土力学性能研究现状及发展趋势[J]. 材料导报, 2020, 34(15): 15102-15109. WANG Y B, YUAN Y, ZHAO R D, et al. Research status and development trend of mechanical properties of red mud geopolymer concrete[J]. Materials Reports, 2020, 34(15): 15102-15109 (in Chinese). [6] 王永宝, 张 翛, 史晨曦, 等. 材料组分对矿渣、粉煤灰和赤泥基地聚物收缩影响试验研究[J]. 太原理工大学学报, 2022, 53(5): 955-962. WANG Y B, ZHANG X, SHI C X, et al. Experimental study on the influence of material composition on shrinkage of slag, fly ash and red mud matrix polymer[J]. Journal of Taiyuan University of Technology, 2022, 53(5): 955-962 (in Chinese). [7] 赵彦旭, 向俊燃, 吕擎峰, 等. 碱激发剂对地聚物固化黄土工程特性的影响[J]. 北京工业大学学报, 2021, 47(6): 636-643. ZHAO Y X, XIANG J R, LÜ Q F, et al. Effect of alkali activator on engineering properties of geopolymer-solidified loess[J]. Journal of Beijing University of Technology, 2021, 47(6): 636-643 (in Chinese). [8] 徐鹏飞, 李泽莹, 王银梅, 等. 冻融循环对新型高分子材料SH固化黄土力学特性的影响试验研究[J]. 长江科学院院报, 2021, 38(1): 137-141. XU P F, LI Z Y, WANG Y M, et al. Impact of freeze-thaw cycles on mechanical properties of loess solidified with new polymer curing agent SH[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(1): 137-141 (in Chinese). [9] 胡再强, 梁志超, 吴传意, 等. 冻融循环作用下石灰改性黄土的力学特性试验研究[J]. 土木工程学报, 2019, 52(增刊1): 211-217. HU Z Q, LIANG Z C, WU C Y, et al. Experimental study on mechanical properties of lime modified loess under freeze-thaw cycle[J]. China Civil Engineering Journal, 2019, 52(supplement 1): 211-217 (in Chinese). [10] 武 昕. 冻融循环下二灰改良黄土强度特性研究[D]. 西安: 西安工业大学, 2020. WU X. Study on strength characteristics of lime-fly ash improved loess under freeze-thaw cycle[D]. Xi'an: Xi'an Technological University, 2020 (in Chinese). [11] 郑永杰, 张 翛, 雒志利, 等. 冻融循环下相变材料改良黄土路基物理力学特性研究[J]. 公路, 2022, 67(8): 36-43. ZHENG Y J, ZHANG X, LUO Z L, et al. Physical and mechanical properties of loess subgrade improved by phase change materials under freeze-thaw cycles[J]. Highway, 2022, 67(8): 36-43 (in Chinese). [12] YANG W, LIU H, ZHU P H, et al. Effect of recycled coarse aggregate quality on the interfacial property and sulfuric acid resistance of geopolymer concrete at different acidity levels[J]. Construction and Building Materials, 2023, 375: 130919. [13] 吕擎峰, 刘鹏飞, 吴朱敏, 等. 复合改性水玻璃固化黄土冻融特性试验研究[J]. 科学技术与工程, 2014, 14(31): 95-99. LYU Q F, LIU P F, WU Z M, et al. Study on the peculiarity of loess solidified by modified sodium silicate under freeze-thaw cycles[J]. Science Technology and Engineering, 2014, 14(31): 95-99 (in Chinese). [14] 吕擎峰, 俞晶晶, 单小康, 等. 石膏碱激发地聚物固化黄土强度及机理[J]. 兰州大学学报(自然科学版), 2021, 57(2): 221-225+232. LYU Q F, YU J J, SHAN X K, et al. A study on the mechanical property and mechanism of loess solidified by gypsum alkali-activated geopolymer[J]. Journal of Lanzhou University (Natural Sciences), 2021, 57(2): 221-225+232 (in Chinese). [15] 刘 雨, 张吾渝, 崔靖俞. 地聚物影响因素对黄土强度的试验研究[J]. 青海大学学报, 2019, 37(5): 82-89+104. LIU Y, ZHANG W Y, CUI J Y. Experimental research on influence of geopolymer factors on loess strength in Qinghai area[J]. Journal of Qinghai University, 2019, 37(5): 82-89+104 (in Chinese). [16] 向俊燃. 水玻璃对碱激发地聚物固化黄土工程特性影响研究[D]. 兰州: 兰州大学, 2020. XIANG J R. Study on the influence of sodium silicate on the engineering characteristics of alkali-activated geopolymer solidified loess[D]. Lanzhou: Lanzhou University, 2020 (in Chinese). [17] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for geotechnical test methods: GB/T 50123—2019 [S]. Beijing: China Plan Publishing House, 2019 (in Chinese). [18] 夏揆华. 承载比试验中最佳含水率试件制作研讨[J]. 低碳世界, 2022, 12(4): 193-195. XIA K H. Discussion on making the best water content specimen in bearing ratio test[J]. Low Carbon World, 2022, 12(4): 193-195 (in Chinese). [19] 胡永亮. 压实度和含水率对红黏土无侧限抗压强度的影响研究[J]. 北方交通, 2023(7): 41-43+48. HU Y L. Research on the influence of compaction degree and moisture content on the unconfined compressive strength of red clay[J]. Northern Communications, 2023(7): 41-43+48 (in Chinese). [20] 李宝平, 平高权, 张 玉, 等. 平面应变条件下冻融循环对黄土力学性质的影响[J]. 土木与环境工程学报, 2021, 43(2): 41-48. LI B P, PING G Q, ZHANG Y, et al. Effects of freeze-thaw cycles on mechanical properties of loess under plane strain[J]. Journal of Civil and Environmental Engineering, 2021, 43(2): 41-48 (in Chinese). [21] 刘乐青, 张吾渝, 张丙印, 等. 冻融循环作用下黄土无侧限抗压强度和微观规律的试验研究[J]. 水文地质工程地质, 2021, 48(4): 109-115. LIU L Q, ZHANG W Y, ZHANG B Y, et al. Effect of freezing-thawing cycles on mechanical properties and microscopic mechanisms of loess[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 109-115 (in Chinese). |