[1] 王正中, 江浩源, 王 羿, 等. 旱寒区输水渠道防渗抗冻胀研究进展与前沿[J]. 农业工程学报, 2020, 36(22): 120-132. WANG Z Z, JIANG H Y, WANG Y, et al. Research progresses and frontiers in anti-seepage and anti-frost heave of canals in cold-arid regions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 120-132 (in Chinese). [2] 姜春萌, 李双喜, 蒋林华, 等. 冻融作用下低热水泥混凝土抗冲磨性能评价[J]. 长江科学院院报, 2023, 40(8): 163-169. JIANG C M, LI S X, JIANG L H, et al. Evaluation of abrasion resistance of low heat cement concrete under freezing and thawing[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(8): 163-169 (in Chinese). [3] 方建银, 潘 优, 党发宁, 等. 季节性寒区高地下水位渠道衬砌形式试验研究[J]. 西安理工大学学报, 2021, 37(3): 433-440. FANG J Y, PAN Y, DANG F N, et al. Experimental study of channel lining forms with high groundwater in seasonal cold area[J]. Journal of Xi'an University of Technology, 2021, 37(3): 433-440 (in Chinese). [4] 王 辉, 刘旭辉, 蔡升宇, 等. 粉煤灰掺量对高性能自密实混凝土抗压强度发展影响分析[J]. 硅酸盐通报, 2021, 40(5): 1573-1578. WANG H, LIU X H, CAI S Y, et al. Influence of fly ash content on compressive strength development of high performance self-compacting concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1573-1578 (in Chinese). [5] 程宁熹, 虞小芳, 刘盈智, 等. 新疆电力行业碳减排路径模拟[J]. 合作经济与科技, 2023(11): 23-27. CHENG N X, YU X F, LIU Y Z, et al. Simulation of carbon emission reduction path in Xinjiang electric power industry[J]. Co-Operative Economy & Science, 2023(11): 23-27 (in Chinese). [6] 王春晓, 董建明, 李得胜. 基于孔结构分形的混杂纤维混凝土抗冻性能研究[J]. 硅酸盐通报, 2021, 40(11): 3608-3616. WANG C X, DONG J M, LI D S. Research on frost resistance of hybrid fiber reinforced concrete based on fractal theory of pore structure[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3608-3616 (in Chinese). [7] ZHAO R D, YUAN Y, CHENG Z Q, et al. Freeze-thaw resistance of class F fly ash-based geopolymer concrete[J]. Construction and Building Materials, 2019, 222: 474-483. [8] DAI J P, WANG Q C, ZHANG B. Frost resistance and life prediction of equal strength concrete under negative temperature curing[J]. Construction and Building Materials, 2023, 396: 132278. [9] 丁向群, 王 钰, 邢 进, 等. 粉煤灰对混凝土干湿循环抗冻性能的影响[J]. 硅酸盐通报, 2015, 34(S1): 17-21+26. DING X Q, WANG Y, XING J, et al. Effect of fly ash on frost resistance of concrete under dry-wet cycle[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(S1): 17-21+26 (in Chinese). [10] 李 阳, 王瑞骏, 闫 菲, 等. 粉煤灰对混凝土抗冻及抗硫酸盐性能的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 45(2): 219-226. LI Y, WANG R J, YAN F, et al. Influence of fly ash on resistance of concrete to freeze and sulfate[J]. Journal of Northwest A & F University (Natural Science Edition), 2017, 45(2): 219-226 (in Chinese). [11] 丁庆军, 耿雪飞, 彭程康琰, 等. 纤维对抗冲磨超高性能混凝土性能的影响[J]. 硅酸盐通报, 2020, 39(3): 724-729. DING Q J, GENG X F, PENG C K Y, et al. Effect of fiber on performance of anti-wear ultra-high performance concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 724-729 (in Chinese). [12] 段珍华, 邓 琪, 肖建庄, 等. 再生混凝土冲击磨耗性能与调控方法[J]. 建筑材料学报, 2022, 25(11): 1136-1142. DUAN Z H, DENG Q, XIAO J Z, et al. Abrasion resistance of recycled aggregate concrete and its control method[J]. Journal of Building Materials, 2022, 25(11): 1136-1142 (in Chinese). [13] LI T Y, LIU X M, WEI Z Q, et al. Study on the wear-resistant mechanism of concrete based on wear theory[J]. Construction and Building Materials, 2021, 271: 121594. [14] 刘荣桂, 徐超杰, 崔钊玮, 等. 纳米MgO粉煤灰混凝土的力学性能研究[J]. 混凝土, 2023(5): 121-123. LIU R G, XU C J, CUI Z W, et al. Mechanical properties experiment research of nano-MgO fly ash concrete[J]. Concrete, 2023(5): 121-123 (in Chinese). [15] WANG L, JIN M M, GUO F X, et al. Pore structural and fractal analysis of the influence of fly ash and silica fume on the mechanical property and abrasion resistance of concrete[J]. Fractals, 2021, 29(2): 2140003. [16] ISLAM M M, ALAM M T, ISLAM M S. Effect of fly ash on freeze-thaw durability of concrete in marine environment[J]. Australian Journal of Structural Engineering, 2018, 19(2): 146-161. [17] ZHANG D S, MAO M J, ZHANG S R, et al. Influence of stress damage and high temperature on the freeze-thaw resistance of concrete with fly ash as fine aggregate[J]. Construction and Building Materials, 2019, 229: 116845. [18] 丁庆军, 李进辉, 耿雪飞, 等. 橡胶颗粒掺杂提高超高性能混凝土的抗冲磨性能及其机理[J]. 硅酸盐学报, 2020, 48(10): 1636-1643. DING Q J, LI J H, GENG X F, et al. Mechanism of enhancing anti-abrasion performance of ultrahigh-performance concrete via rubber particles[J]. Journal of the Chinese Ceramic Society, 2020, 48(10): 1636-1643 (in Chinese). [19] 余 舟, 王 磊, 杨华全. 不同掺合料对水工混凝土抗冲磨性能的影响研究[J]. 混凝土, 2019(6): 96-99. YU Z, WANG L, YANG H Q. Study on the influence of different admixtures on the abrasion resistance of hydraulic concrete[J]. Concrete, 2019(6): 96-99 (in Chinese). [20] CAI X H, HE Z, TANG S W, et al. Abrasion erosion characteristics of concrete made with moderate heat Portland cement, fly ash and silica fume using sandblasting test[J]. Construction and Building Materials, 2016, 127: 804-814. [21] WU F, CHEN X Q, CHEN J G. Abrasion resistance enhancement of concrete using surface treatment methods[J]. Tribology International, 2023, 179: 108180. [22] ZARRABI N, MOGHIM M N, EFTEKHAR M R. Effect of hydraulic parameters on abrasion erosion of fiber reinforced concrete in hydraulic structures[J]. Construction and Building Materials, 2021, 267: 120966. [23] XU O M, HAN S, LIU Y M, et al. Experimental investigation surface abrasion resistance and surface frost resistance of concrete pavement incorporating fly ash and slag[J]. International Journal of Pavement Engineering, 2021, 22(14): 1858-1866. [24] BA H J, LI J J, NI W, et al. Effect of calcium to silicon ratio on the microstructure of hydrated calcium silicate gels prepared under medium alkalinity[J]. Construction and Building Materials, 2023, 379: 131240. [25] WANG S Y, GU X W, LIU J P, et al. Modulation of the workability and Ca/Si/Al ratio of cement-metakaolin cementitious material system by using fly ash: synergistic effect and hydration products[J]. Construction and Building Materials, 2023, 404: 133300. |