[1] 古小超, 梅鹏蔚, 张 震, 等. 含铅废水处理技术研究进展[J]. 工业水处理, 2020, 40(12): 14-19. GU X C, MEI P Y, ZHANG Z, et al. Research progress on treatment technology of lead-bearing wastewater[J]. Industrial Water Treatment, 2020, 40(12): 14-19 (in Chinese). [2] WANG L, LI Y. Biosorption behavior and mechanism of lead (II) from aqueous solution by aerobic granules (AG) and bacterial alginate (BA)[J]. Journal of Ocean University of China, 2012, 11(4): 495-500. [3] CHEN Y N, LIANG W Y, LI Y P, et al. Modification, application and reaction mechanisms of nano-sized iron sulfide particles for pollutant removal from soil and water: a review[J]. Chemical Engineering Journal, 2019, 362: 144-159. [4] MONDAL B, MAHENDRANATH A, SOM A, et al. Rapid reaction of MoS2 nanosheets with Pb2+ and Pb4+ ions in solution[J]. Nanoscale, 2018, 10(4): 1807-1814. [5] 阮 涌, 嵇辛勤, 文 明, 等. 食品中铅污染检测技术研究进展[J]. 贵州畜牧兽医, 2012, 36(5): 12-15. RUAN Y, JI X Q, WEN M, et al. Research progress of lead contamination detection technology in food[J]. Guizhou Journal of Animal Husbandry & Veterinary Medicine, 2012, 36(5): 12-15 (in Chinese). [6] 张 坤, 罗 书. 水体重金属污染治理技术研究进展[J]. 中国环境管理干部学院学报, 2010, 20(3): 62-64+81. ZHANG K, LUO S. Progress in technology study of heavy metal pollution control in water body[J]. Journal of Environmental Management College of China, 2010, 20(3): 62-64+81 (in Chinese). [7] 余江滔, 田力康, 王义超, 等. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334. YU J T, TIAN L K, WANG Y C, et al. Mechanical property of recycled micro-powder cementitious composites with ultra-high ductility[J]. Materials Reports, 2019, 33(8): 1328-1334 (in Chinese). [8] TANG Q, MA Z M, WU H X, et al. The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: a critical review[J]. Cement and Concrete Composites, 2020, 114: 103807. [9] MA Z H, LI J S, XUE Q, et al. Deep insight on mechanism and contribution of As(V) removal by thermal modification waste concrete powder[J]. Science of the Total Environment, 2022, 807: 150764. [10] COLEMAN N J, LEE W E, SLIPPER I J. Interactions of aqueous Cu2+, Zn2+ and Pb2+ ions with crushed concrete fines[J]. Journal of Hazardous Materials, 2005, 121(1/2/3): 203-213. [11] SHIN W S, NA K R, KIM Y K. Adsorption of metal ions from aqueous solution by recycled aggregate: estimation of pretreatment effect[J]. Desalination and Water Treatment, 2016, 57(20): 9366-9374. [12] MA Z H, XUE R Z, LI J S, et al. Use of thermally modified waste concrete powder for removal of Pb (II) from wastewater: effects and mechanism[J]. Environmental Pollution, 2021, 277: 116776. [13] CHEN Q Y, HILLS C D, YUAN M H, et al. Characterization of carbonated tricalcium silicate and its sorption capacity for heavy metals: a micron-scale composite adsorbent of active silicate gel and calcite[J]. Journal of Hazardous Materials, 2008, 153(1/2): 775-783. [14] YOU K S, LEE S H, HWANG S H, et al. Effect of CO2 carbonation on the chemical properties of waste cement: cec and the heavy metal adsorption ability[J]. MATERIALS TRANSACTIONS, 2011, 52(8): 1679-1684. [15] PARK S M, JANG J G. Carbonation-induced weathering effect on cesium retention of cement paste[J]. Journal of Nuclear Materials, 2018, 505: 159-164. [16] ZHAN B J, POON C S, LIU Q, et al. Experimental study on CO2 curing for enhancement of recycled aggregate properties[J]. Construction and Building Materials, 2014, 67: 3-7. [17] 王 征, 仝 壮, 王燕诗, 等. 4种煅烧活化贝壳粉对Pb2+的吸附性能研究[J]. 江西师范大学学报(自然科学版), 2019, 43(1): 84-89. WANG Z, TONG Z, WANG Y S, et al. The adsorption of Pb2+ on water by four shell powders[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2019, 43(1): 84-89 (in Chinese). [18] 封振宇, 蒋贺纯. 球磨纳米碳酸钙去除水中铅离子的吸附机理[J]. 山东大学学报(理学版), 2019, 54(1): 19-25+35. FENG Z Y, JIANG H C. Ball-milled CaCO3 nanoparticles for removal of Pb2+ in solution[J]. Journal of Shandong University (Natural Science), 2019, 54(1): 19-25+35 (in Chinese). [19] 潘沛玲. 两种吸附法去除模拟废水中Pb2+的实验对比[J]. 当代化工, 2016, 45(8): 1700-1703. PAN P L. Experimental comparison of two adsorption methods for removing Pb2+ from simulated wastewater[J]. Contemporary Chemical Industry, 2016, 45(8): 1700-1703 (in Chinese). [20] 常 辉, 崔素萍, 王亚丽, 等. 水泥浆粉去除废水中铅离子效果及行为研究[J]. 硅酸盐通报, 2022, 41(2): 616-624. CHANG H, CUI S P, WANG Y L, et al. Effect and behavior of cement slurry powder in removing lead ion from wastewater[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 616-624 (in Chinese). [21] CHEN Q Y, LUO Z, HILLS C, et al. Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide[J]. Water Research, 2009, 43(10): 2605-2614. [22] SDIRI A, HIGASHI T, JAMOUSSI F, et al. Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems[J]. Journal of Environmental Management, 2012, 93(1): 245-253. [23] THEVENIN G, PERA J. Interactions between lead and different binders[J]. Cement and Concrete Research, 1999, 29(10): 1605-1610. [24] SASAKI T, IIZUKA A, WATANABE M, et al. Preparation and performance of arsenate (V) adsorbents derived from concrete wastes[J]. Waste Management, 2014, 34(10): 1829-1835. [25] SU Y M, SUN X Y, ZHOU X F, et al. Zero-valent iron doped carbons readily developed from sewage sludge for lead removal from aqueous solution[J]. Journal of Environmental Sciences, 2015, 36: 1-8. [26] GODELITSAS A, ASTILLEROS J M, HALLAM K, et al. Interaction of calcium carbonates with lead in aqueous solutions[J]. Environmental Science & Technology, 2003, 37(15): 3351-3360. [27] DI LORENZO F, RUIZ-AGUDO C, CHURAKOV S V. The key effects of polymorphism during PbII uptake by calcite and aragonite[J]. CrystEngComm, 2019, 21(41): 6145-6155. [28] MESSAGER C, BECK L, DE VIGUERIE L, et al. Thermal analysis of carbonate pigments and linseed oil to optimize CO2 extraction for radiocarbon dating of lead white paintings[J]. Microchemical Journal, 2020, 154: 104637. |