[1] MACRELLI G, VARSHNEYA A K, MAURO J C. Ultra-thin glass as a substrate for flexible photonics[J]. Optical Materials, 2020, 106: 109994. [2] GARNER S, GLAESEMANN S, LI X H. Ultra-slim flexible glass for roll-to-roll electronic device fabrication[J]. Applied Physics A, 2014, 116(2): 403-407. [3] TAMAGAKI H, IKARI Y, OHBA N. Roll-to-roll sputter deposition on flexible glass substrates[J]. Surface and Coatings Technology, 2014, 241: 138-141. [4] WANG Z, GUAN T H, REN T F, et al. Effect of normal scratch load and HF etching on the mechanical behavior of annealed and chemically strengthened aluminosilicate glass[J]. Ceramics International, 2020, 46(4): 4813-4823. [5] LI L, LIN H T, MICHON J, et al. A new twist on glass: a brittle material enabling flexible integrated photonics[J]. International Journal of Applied Glass Science, 2017, 8(1): 61-68. [6] VARSHNEYA A K, UNIVERSITY A. Recent advances in the chemical strengthening of glass[J]. Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, 2017, 58(4): 127-132. [7] OVERLY S. Stronger smartphone screens coming with Gorilla Glass 5[J]. Toronto Star (Canada), 2016. [8] EGBOIYI B, MATTEY R, KONICA S, et al. Mechanistic understanding of the fracture toughening in chemically strengthened glass—experiments and phase-field fracture modeling[J]. International Journal of Solids and Structures, 2022, 238: 111374. [9] MACRELLI G, MAURO J C, VARSHNEYA A K. Coupling of diffusion and chemical stress: the case of ion exchange in glass[J]. Journal of the American Ceramic Society, 2021, 104(11): 5599-5613. [10] HE F, JOTZ M, WEGENER H, et al. Towards flexible glass: ultra-thin glass with tight dimensional tolerance and high strength achieved by ion exchange[J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 218-221. [11] GULATI S T, WESTBROOK J, CARLEY S, et al. 45.2: two point bending of thin glass substrate[J]. SID Symposium Digest of Technical Papers, 2011, 42(1): 652-654. [12] TANG Z Z, LOWER N P, GUPTA P K, et al. Using the two-point bend technique to determine failure stress of pristine glass fibers[J]. Journal of Non-Crystalline Solids, 2015, 428: 98-104. [13] GOMEZ S, DEJNEKA M J, ELLISON A J, et al. A look at the chemical strengthening process: Alkali aluminosilicate glasses vs. soda-lime glass[J]. 71st Conference on Glass Problems: Ceramic Engineering and Science Proceedings, 2011, 32: 61-66. [14] NUNES B, PINHO I, CRUZ FERNANDES J, et al. Mechanical properties of ion-exchanged alkali aluminosilicate glass[J]. International Journal of Applied Glass Science, 2023, 14(1): 155-164. [15] AKIBA S. Ultra-thin chemically strengthened cover glasses for foldable devices[J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 222-225. [16] ZHANG Y M, LI B B, LI D, et al. Microstructure, cytocompatibility, and chemical durability of chemically strengthened LAS (Li2O-Al2O3-SiO2) glass-ceramic materials[J]. Journal of the European Ceramic Society, 2022, 42(13): 6110-6118. [17] ERDEM , GULDIREN D, AYDIN S. Chemical tempering of soda lime silicate glasses by ion exchange process for the improvement of surface and bulk mechanical strength[J]. Journal of Non-Crystalline Solids, 2017, 473: 170-178. [18] JOSHI D, KITTLESON A P, HARRIS J T. Probability of failure and weibull size-scaling parameters for thin glass subjected to two-point bending[J]. Journal of the European Ceramic Society, 2022, 42(16): 7609-7619. [19] JIANG L B, WANG Y, MOHAGHEGHIAN I, et al. Subcritical crack growth and lifetime prediction of chemically strengthened aluminosilicate glass[J]. Materials & Design, 2017, 122: 128-135. |