[1] 吴海清. 基于硫系玻璃的大视场红外光学系统无热化设计[J]. 红外, 2021, 42(7): 1-8. WU H Q. Non-thermal design of large field infrared optical system based on chalcogenide glass[J]. Infrared, 2021, 42(7): 1-8 (in Chinese). [2] LIN X B, WEI M L, LEI K H, et al. Compact Mid-Infrared chalcogenide glass photonic devices based on Robust-Inverse design[J]. Laser & Photonics Reviews, 2023, 17(2): 2200445. [3] 宋宝安, 王乔方, 张莹昭, 等. 红外硒基硫系玻璃光学非均匀性及影响因素分析[J]. 红外与激光工程, 2012, 41(8): 1985-1989. SONG B A, WANG Q F, ZHANG Y Z, et al. Optical inhomogeneity of IR Se-based chalcogenide glasses and influencing factor analysis[J]. Infrared and Laser Engineering, 2012, 41(8): 1985-1989 (in Chinese). [4] ZHOU G J, CHEN J J, SU C R, et al. Multilayered chalcogenide glass with gradient index for reduced SWaP IR optical system[J]. Ceramics International, 2023, 49(20): 32843-32849. [5] ALAA M, ABBADY G. A thermal analysis study of melt-quenched Zn5Se95 chalcogenide glass[J]. Journal of Alloys and Compounds, 2020, 818: 152880. [6] 孙国珍, 许军锋, 王 霞. Se-Sb硫系玻璃的制备及性能研究[J]. 冶金与材料, 2018, 38(6): 19-20+23. SUN G Z, XU J F, WANG X. Preparation and properties of Se-Sb chalcogenide glass[J]. Metallurgy and Materials, 2018, 38(6): 19-20+23 (in Chinese). [7] XU W N, REN J, CHEN G R. Glass transition kinetics and crystallization mechanism in Ge-Ga-S-CsCl chalcohalide glasses[J]. Journal of Non-Crystalline Solids, 2014, 398/399: 42-47. [8] MATTHIEU C, CHANELLE A, MYUNGKOO K, et al. Investigation of ZnSe stability and dissolution behavior in As-S-Se chalcogenide glasses[J]. Journal of Non-Crystalline Solids, 2021, 555: 120619. [9] 李姣姣, 坚增运, 朱 满, 等. GexSe90-xSb10硫系玻璃的热力学特性和动力学脆性研究[J]. 金属学报, 2015, 51(11): 1384-1390. LI J J, JIAN Z Y, ZHU M, et al. Study on thermodynamic properties and kinetics fragility of GexSe90-xSb10 chalcogenide glasses[J]. Acta Metallurgica Sinica, 2015, 51(11): 1384-1390 (in Chinese). [10] TANG L L, ZHOU T F, ZHOU J, et al. Research on single point diamond turning of chalcogenide glass aspheric lens[J]. Procedia CIRP, 2018, 71: 293-298. [11] BAYINDIR M, SORIN F, ABOURADDY A F, et al. Metal-insulator-semiconductor optoelectronic fibres[J]. Nature, 2004, 431(7010): 826-829. [12] 肖正航, 孟晓辉, 王国燕. 大口径红外透镜高效制造技术研究[J]. 航天制造技术, 2022(5): 9-12. XIAO Z H, MENG X H, WANG G Y. Research on efficient manufacturing technology of large aperture infrared lens[J]. Aerospace Manufacturing Technology, 2022(5): 9-12 (in Chinese). [13] GU S X, HU H P, GUO H T, et al. Second-harmonic generation in transparent surface crystallized GeS2-Ga2S3-CdS chalcogenide glasses[J]. Optics Communications, 2008, 281(9): 2651-2655. [14] DAI S X, PENG B, ZHANG P J, et al. The near- and mid-infrared emission properties of Tm3+-doped GeGaS-CsI chalcogenide glasses[J]. Journal of Non-Crystalline Solids, 2010, 356(44/45/46/47/48/49): 2424-2428. [15] 樊 非, 徐 曦, 许 乔, 等. 大口径强激光光学元件超精密制造技术研究进展[J]. 光电工程, 2020, 47(8): 5-17. FAN F, XU X, XU Q, et al. Research progress in ultra-precision manufacturing of large aperture high intensity laser optical components [J]. Opto-electronic Engineering, 2020, 47(8): 5-17 (in Chinese). [16] XUE D B, WANG P, JIAO L Y, et al. Experimental study on chemical mechanical polishing of chalcogenide glasses[J]. Applied Optics, 2019, 58(8): 1950-1954. [17] 林常规, 郭小勇, 王先锋, 等. As2Se3硫系玻璃非球面镜片的精密模压成型[J]. 红外与激光工程, 2019, 48(7): 137-143. LIN C G, GUO X Y, WANG X F, et al. Precision molding of As2Se3 chalcogenide glass aspheric lens[J]. Infrared and Laser Engineering, 2019, 48(7): 137-143 (in Chinese). [18] KOHEI K, NAOYUKI K. Recent progress in chalcogenide glasses applicable to infrared optical elements manufactured by molding technology[J]. Journal of the Ceramic Society of Japan, 2022, 130(8): 584-589. [19] 李池娟, 孙昌峰, 孟凡波, 等. 单点金刚石车削技术的研究[J]. 激光与红外, 2009, 39(12): 1341-1343. LI C J, SUN C F, MENG F B, et al. Study on single point diamond turning technology[J]. Laser & Infrared, 2009, 39(12): 1341-1343 (in Chinese). [20] TAUHIDUZZAMAN M, VELDHUIS S C. Effect of material microstructure and tool geometry on surface generation in single point diamond turning[J]. Precision Engineering, 2014, 38(3): 481-491. [21] 康 战, 聂凤明, 刘劲松, 等. 单点金刚石精密数控车削加工技术及发展前景分析[J]. 光学技术, 2010, 36(2): 163-167. KANG Z, NIE F M, LIU J S, et al. Research on single point diamond precision numerical control turning technique and its development[J]. Optical Technique, 2010, 36(2): 163-167 (in Chinese). [22] 王 朋, 薛栋柏, 张 昊, 等. 红外晶体等距恒速单点金刚石车削[J]. 红外与激光工程, 2019, 48(7): 132-136. WANG P, XUE D B, ZHANG H, et al. ESCV cutting method during infrared crystal single point diamond turning process[J]. Infrared and Laser Engineering, 2019, 48(7): 132-136 (in Chinese). [23] OWEN J D, DAVIES M A, SCHMID T D, et al. On the ultra-precision diamond machining of chalcogenide glass[J]. CIRP Annals, 2015, 64(1): 113-116. [24] BAE D S, YEO J B, LEE H Y. A study on a production and processing technique for a GeSbSe aspheric lens with a mid-infrared wavelength band[J]. Journal of the Korean Physical Society, 2013, 62(11): 1610-1615. [25] TROUTMAN J R, OWEN J D, ZARE A, et al. Cutting mechanics and subsurface integrity in diamond machining of chalcogenide glass[J]. Procedia CIRP, 2016, 45: 135-138. [26] 李淑萍. ZnSe晶体单点金刚石车削加工技术研究[D]. 昆明: 昆明理工大学, 2017: 13-17. LI S P. Study on single point diamond turning technology of ZnSe crystal[D]. Kunming: Kunming University of Science and Technology, 2017: 13-17 (in Chinese). [27] JIANG C, TOVAR C M, STAASMEYER J H, et al. Simulation of the refractive index variation and validation of the form deviation in precisely molded chalcogenide glass lenses (IRG 26) considering the stress and structure relaxation[J]. Materials, 2022, 15(19): 6756. [28] ZONG W J, HUANG Y H, ZHANG Y L, et al. Conservation law of surface roughness in single point diamond turning[J]. International Journal of Machine Tools and Manufacture, 2014, 84: 58-63. [29] CHEUNG C F, LEE W B. Characterisation of nanosurface generation in single-point diamond turning[J]. International Journal of Machine Tools and Manufacture, 2001, 41(6): 851-875. [30] 权艳红. 影响单点金刚石超精密车削加工精度因素的研究[J]. 装备制造技术, 2013(2): 84-86. QUAN Y H. Affect single point diamond ultra-precision turning machining accuracy factors[J]. Equipment Manufacturing Technology, 2013(2): 84-86 (in Chinese). [31] 戴玉琦. 单点金刚石车削刀具中心误差在线辨识新方法研究[D]. 深圳: 深圳大学, 2020: 1-5. DAI Y Q. Research on a new on-line identification method for center error of single point diamond turning tool[D]. Shenzhen: Shenzhen University, 2020: 1-5 (in Chinese). [32] 兰喜瑞, 张宇佳, 孙宏宇, 等. 大口径ZnSe晶体单点金刚石车削工艺技术研究[J]. 光电技术应用, 2023, 38(3): 72-74+84. LAN X R, ZHANG Y J, SUN H Y, et al. Single point turning technology of large diameter ZnSe crystals[J]. Electro-Optic Technology Application, 2023, 38(3): 72-74+84 (in Chinese). [33] LIU X F, ZHANG J J, HU X Y, et al. Influence of tool material and geometry on micro-textured surface in radial ultrasonic vibration-assisted turning[J]. International Journal of Mechanical Sciences, 2019, 152(1): 545 -557. [34] 陈俊云, 赵清亮, 罗 健. 单点金刚石车削中刀具—工件相对振动的研究[J]. 机械工程学报, 2011, 47(17): 135-140. CHEN J Y, ZHAO Q L, LUO J. Investigation on the relative tool-work vibration in single-point diamond turning[J]. Journal of Mechanical Engineering, 2011, 47(17): 135-140 (in Chinese). [35] 阴俊峰, 张 洪. 影响单点金刚石车削加工质量的因素分析[J]. 机电工程技术, 2014, 43(6): 116-120. YIN J F, ZHANG H. Analysis on factors influencing single point diamond turning[J]. Mechanical & Electrical Engineering Technology, 2014, 43(6): 116-120 (in Chinese). [36] ZHANG H, ZHANG Y Q, YU P F, et al. Preparation and thermoelectric properties of novel Tellurium-based glassy semiconductors[J]. Scripta Materialia, 2021, 203: 114038. [37] PETHES I, CHAHAL R, NAZABAL V, et al. Chemical short-range order in selenide and telluride glasses[J]. The Journal of Physical Chemistry B, 2016, 120(34): 9204-9214. [38] 陈俊云, 赵清亮. 单点金刚石车削表面粗糙度的研究[J]. 北京工业大学学报, 2012, 38(7): 1013-1019. CHEN J Y, ZHAO Q L. Investigation of surface roughness in single point diamond turning[J]. Journal of Beijing University of Technology, 2012, 38(7): 1013-1019 (in Chinese). |